Get Answers to all your Questions

header-bg qa

Provide solution for RD Sharma Maths Class 12 Chapter 26 Directions Cosines and Direction Ratios Exercise Multiple Choice Question, question 10.

Answers (1)

Final Answer:

(a) \left [\frac{19}{8},\frac{57}{16},\frac{17}{16} \right ]

Hint: Bisection divides triangle in ratios

\frac{AB}{AC}=\frac{BD}{DC}

Given: A(3,2,0), B(5,3,2) and C(-9,6,-3) are vertices of triangle ABC

To find: Point D coordinates which meets BC at bisector of \angle BAC

Solution:  

  

As bisector AD meets BC at D, therefore

\Rightarrow \frac{AB}{AC}=\frac{BD}{DC}

Using distance formula

\begin{aligned} &A B=\sqrt{(5-3)^{2}+(3-2)^{2}+(2-0)^{2}} \\ &=\sqrt{4+1+4} \\ &=\sqrt{9} \\ &=3 \end{aligned}

and,

\begin{aligned} &A C=\sqrt{(-9-3)^{2}+(6-2)^{2}+(-3-0)^{2}} \\ &=\sqrt{(-12)^{2}+4^{2}+3^{2}} \\ &=\sqrt{144+16+9} \\ &=\sqrt{169} \\ &=13 \end{aligned}

Therefore,

\frac{BD}{DC}=\frac{13}{8}

D divides BC in the ratio 3:13 internally

Using section formula coordinates of D are

\begin{aligned} &(x, y, z)=\left[\Rightarrow \frac{-9 \times 3+5 \times 13}{3+13}, \frac{6 \times 3+13 \times 3}{3+13}, \frac{-3 \times 3+13 \times 2}{3+13}\right] \\ &(x, y, z)=\left[\frac{19}{8}, \frac{57}{16}, \frac{17}{16}\right] \end{aligned}

Hence coordinate of D are

\left [\frac{19}{8},\frac{57}{16},\frac{17}{16} \right ]

Therefore option (a) is correct

Posted by

infoexpert24

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads