Get Answers to all your Questions

header-bg qa

Provide solution for RD Sharma Maths Class 12 Chapter 26 Directions Cosines and Direction Ratios Exercise Multiple Choice Question, question 11.

Answers (1)

Final answer: (a) (-1,2,-2)

Hint: Use direction to find direction cosine

Given:

|\overrightarrow{O P}|=3 \&(a, b, c)=(-1,2,-2)

To Find: Point P

Solution: Direction cosine is related to direction ratio as

\begin{aligned} &l=\frac{a}{\sqrt{a^{2}+b^{2}+c^{2}}}, m=\frac{b}{\sqrt{a^{2}+b^{2}+c^{2}}}, n=\frac{c}{\sqrt{a^{2}+b^{2}+c^{2}}} \\ &l=\frac{-1}{\sqrt{(-1)^{2}+2^{2}+(-2)^{2}}}, m=\frac{2}{\sqrt{(-1)^{2}+2^{2}+(-2)^{2}}}, n=\frac{-2}{\sqrt{(-1)^{2}+2^{2}+(-2)^{2}}} \\ &l=-\frac{1}{3}, m=\frac{2}{3}, n=-\frac{2}{3} \end{aligned}

Now,

\overrightarrow{OP}

=Position of P- Position of O

\begin{aligned} &\overrightarrow{O P}=(x \hat{i}+y \hat{j}+z \hat{k})-(0 \hat{i}+0 \hat{j}+0 \hat{k}) \\ &\overrightarrow{O P}=(x \hat{i}+y \hat{j}+z \hat{k}) \end{aligned}

where (x,y,z) are the coordinates of P

Now,

\begin{aligned} &\overrightarrow{O P}=|\overrightarrow{O P}|\left(l^{\Lambda}+m \hat{j}+n \hat{k}\right) \\ &(x \hat{i}+y \hat{j}+z \stackrel{\Lambda}{k})=3\left(\frac{-1}{3} \hat{i}+\frac{2}{3} j-\frac{2}{3} \hat{k}\right) \\ &\left(x \stackrel{\Lambda}{i}+y \hat{j}+z^{\Lambda}\right)=(-\hat{i}+2 \hat{j}-2 \hat{k}) \end{aligned}

Comparing both,

(x,y,z)=(-1,2,-2)

Therefore coordinates of point P are (-1,2,-2). Hence option (a) is correct

Posted by

infoexpert24

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads