Get Answers to all your Questions

header-bg qa

Provide solution for RD Sharma Maths Class 12 Chapter 26 Directions Cosines and Direction Ratios Exercise Multiple Choice Question, question 12.

Answers (1)

Final Answer:

(d) \cos ^{-1}\frac{1}{3}

Given: A cube

To Find: Angle between its diagonals

Solution: Let us consider a cube OABCDEFG with vertices as shown

O(0,0,0),  A(a,0,0), B(a,a,0), C(0,a,0), D(0,a,a), E(0,0,a), F(a,0,a), G(a,a,a)

There are four diagonals OG, CF, AD, and BE

Let us consider OG and AD

\overrightarrow{OG} = Position vector of G- Position vector of O

\begin{aligned} &\overrightarrow{O G}=(a-0) \hat{i}+(a-0) \hat{j}+(a-0) \hat{k} \\ &\overrightarrow{O G}=a \hat{i}+a j+a \hat{k} \end{aligned}

Also,

\overrightarrow{AD} =Position vector of D - Position vector of A

\begin{aligned} &\overrightarrow{A D}=(0-a) \hat{i}+(a-0) \hat{j}+(a-0) \hat{k} \\ &\overrightarrow{A D}=-a i+a \hat{j}+a \hat{k} \end{aligned}

Now using dot product

\begin{aligned} &\overrightarrow{O G} \cdot \overrightarrow{A D}=|\overrightarrow{O G} \| \overrightarrow{A D}| \cos \theta \\ &\cos \theta=\frac{\overrightarrow{O G} \cdot \overrightarrow{A D}}{|\overrightarrow{O G}||\overrightarrow{A D}|} \\ &\cos \theta=\frac{(a \hat{i}+a \hat{j}+a \hat{k}) \cdot(-a \hat{i}+a \hat{j}+a k)}{\sqrt{a^{2}+a^{2}+a^{2}} \sqrt{a^{2}+a^{2}+a^{2}}} \end{aligned}

\begin{aligned} &\cos \theta=\frac{-a^{2}+a^{2}+a^{2}}{a \sqrt{3} \times a \sqrt{3}} \\ &\cos \theta=\frac{a^{2}}{a^{2} \times 3} \\ &\theta=\cos ^{-1}\left(\frac{1}{3}\right) \end{aligned}

 

Therefore angle between diagonals of cube is

\cos ^{-1}\frac{1}{3}

Hence option (d) is correct.

Posted by

infoexpert24

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads