Get Answers to all your Questions

header-bg qa
Filter By

All Questions

A massless string connects two pulley of masses ' 2 \mathrm{~kg}' and '1 \mathrm{~kg}' respectively as shown in the figure.

The heavier pulley is fixed and free to rotate about its central axis while the other is free to rotate as well as translate. Find the acceleration of the lower pulley if the system was released from the rest. [Given, g=10 \mathrm{~m} / \mathrm{s}^2]

Option: 1

\frac{4}{3} \mathrm{~gm} / \mathrm{s}^2


Option: 2

\frac{3}{2} \mathrm{~gm} / \mathrm{s}^2


Option: 3

\frac{3}{4} \mathrm{~gm} / \mathrm{s}^2


Option: 4

\frac{2}{3} \mathrm{~gm} / \mathrm{s}^2


Not understanding sir 

View Full Answer(2)
Posted by

Raju vittal nandi

Calculate the acceleration of block m_1 of the following diagram. Assume all surfaces are frictionless . Here m1 = 100kg and m2 = 50kg

 

Option: 1

0.33m/s2


Option: 2

0.66m/s2


Option: 3

1m/s2


Option: 4

1.32m/s2


1.32

View Full Answer(4)
Posted by

balda gayathri

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads

When cell has stalled DNA replication fork, which checkpoint should be predominantly activated?

Option: 1

G1/S

 

Option: 2

G2/M

 

 

 

Option: 3

M

 

 

Option: 4

Both GM and M

 

G2/M should be activated as the cell has stalled DNA replication fork.

View Full Answer(1)
Posted by

Ajit Kumar Dubey

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE

Given : f(x)=\left\{\begin{matrix} x, &0\leq x< \frac{1}{2} \\ \frac{1}{2}, &x=\frac{1}{2} \\ 1-x, &\frac{1}{2} < x\leq 1 \end{matrix}\right.  and g(x)=\left ( x-\frac{1}{2} \right )^{2},\: x\epsilon \textbf{R}. Then the area (in sq. units) of the region bounded b the curves, y=f(x)  and y=g(x) between the lines, 2x=1\: \: \: and\: \: \: 2x=\sqrt{3}, is : 
Option: 1 \frac{\sqrt{3}}{4}-\frac{1}{3}
 
Option: 2 \frac{1}{3}+\frac{\sqrt{3}}{4}
 
Option: 3 \frac{1}{2}+\frac{\sqrt{3}}{4}
 
Option: 4 \frac{1}{2}-\frac{\sqrt{3}}{4}
 
 

 

 

Area Bounded by Curves When Intersects at More Than One Point -

Area bounded by the curves  y = f(x),  y = g(x)  and  intersect each other in the interval [a, b]

First find the point of intersection of these curves  y = f(x) and  y = g(x) , let the point of intersection be x = c

Area of the shaded region  

=\int_{a}^{c}\{f(x)-g(x)\} d x+\int_{c}^{b}\{g(x)-f(x)\} d x

 

When two curves intersects more than one point

rea bounded by the curves  y=f(x),  y=g(x)  and  intersect each other at three points at  x = a, x = b amd x = c.

To find the point of intersection, solve f(x) = g(x).

For x ∈ (a, c), f(x) > g(x) and for x ∈ (c, b), g(x) > f(x).

Area bounded by curves,

\\\mathrm{A=} \int_{a}^{b}\left |f(x)-g(x) \right |dx\\\\\mathrm{\;\;\;\;=} \int_{a}^{c}\left ( f(x)-g(x) \right )dx+\int_{c}^{b}\left ( g(x)-f(x) \right )dx  

 

-

 

 

Required area = Area of trapezium ABCD - \int_{1/2}^{\sqrt3/2}\left ( x-\frac{1}{2} \right )^2dx

\\=\frac{1}{2}\left(\frac{\sqrt{3}-1}{2}\right)\left(\frac{1}{2}+1-\frac{\sqrt{3}}{2}\right)-\frac{1}{3}\left(\left(x-\frac{1}{2}\right)^{3}\right)_{\frac{1}{2}}^{\frac{\sqrt{3}}{2}}\\=\frac{\sqrt3}{4}-\frac{1}{3}

Correct Option (1)

View Full Answer(1)
Posted by

avinash.dongre

Let a function f:\left [ 0,5 \right ]\rightarrow \textbf{R} be continuous, f\left ( 1 \right )=3 and F be defined as : F(x)=\int_{1}^{x}t^{2}g\left ( t \right )dt, where g(t)=\int_{1}^{t}f\left ( u \right )du. Then for the function F, the point x=1 is :   
Option: 1 a point of infection.
Option: 2  a point of local maxima.
Option: 3 a point of local minima.
Option: 4 not a critical point.   
 

 

 

Integration as Reverse Process of Differentiation -

Integration is the reverse process of differentiation. In integration, we find the function whose differential coefficient is given. 

For example,

\\\mathrm{\frac{d}{dx}(\sin x)=\cos x}\\\\\mathrm{\frac{d}{dx}\left ( x^2 \right )=2x}\\\\\mathrm{\frac{d}{dx}\left ( e^x \right )=e^x}

In the above example,  the function cos x is the derived function of sin x. We say that sin x is an anti derivative (or an integral) of cos x. Similarly, x2 and ex  are the anti derivatives (or integrals) of 2x and ex respectively.  

Also note that the derivative of a constant  (C) is zero. So we can write the above examples as:

\\\mathrm{\frac{d}{dx}(\sin x+c)=\cos x}\\\\\mathrm{\frac{d}{dx}\left ( x^2+c \right )=2x}\\\\\mathrm{\frac{d}{dx}\left ( e^x +c\right )=e^x}

 

Thus, anti derivatives (or integrals) of the above functions are not unique. Actually, there exist infinitely many anti derivatives of each of these functions which can be obtained by selecting C arbitrarily from the set of real numbers. 

For this reason C is referred to as arbitrary constant. In fact, C is the parameter by varying which one gets different anti derivatives (or integrals) of the given function. 

 

If the function F(x) is an antiderivative of f(x), then the expression F(x) + C is the indefinite integral of the function f(x) and is denoted by the symbol ∫ f(x) dx. 

By definition,

\\\mathrm{\int f(x)dx=F(x)+c,\;\;\;where\;\;F'(x)=f(x)\;\;and\;\;'c' \;is\;constant.}

-

 

 

 

Maxima and Minima of a Function -

Maxima and Minima of a Function

Let y = f(x) be a real function defined at x = a. Then the function f(x) is said to have a maximum value at x = a, if f(x) ≤ f(a)  ∀ a ≥∈ R.

And also the function f(x) is said to have a minimum value at x = a, if f(x) ≥ f(a)  ∀ a ∈ R

   

Concept of Local Maxima and Local Minima 

The function f(x) is said to have a maximum (or we say that f(x) attains a maximum) at a point ‘a’ if the value of f(x) at ‘a’  is greater than its values for all x in a small neighborhood of ‘a’ .

In other words, f(x) has a maximum at x = ‘a’, if f(a + h) ≤ f(a) and f(a - h) ≤ f(a), where h ≥ 0 (very small quantity).

The function f(x) is said to have a minimum (or we say that f(x) attains a minimum) at a point ‘b’ if the value of f(x) at ‘b’  is less than its values for all x in a small neighborhood of ‘b’ .

In other words, f(x) has a maximum at x = ‘b’, if f(a + h) ≥ f(a) and f(a - h) ≥ f(a), where h ≥ 0 (very small quantity). 

-

 

 

 

\\ \begin{aligned} &\mathrm{F}^{\prime}(\mathrm{x})=\mathrm{x}^{2} \mathrm{g}(\mathrm{x})\\ &\Rightarrow \mathrm{F}^{\prime}(1)=1.\;\;g(1)=0\;\;\;\;\;\ldots(1)\;\;\;\;\;\;\;\;(\because\;g(1)=0)\\ &\text { Now }(\mathrm{x})=2 \mathrm{xg}(\mathrm{x})+\mathrm{x}^{2} \mathrm{g}^{\prime}(\mathrm{x}) \end{aligned}

\\ \begin{aligned} &\Rightarrow F^{\prime \prime}(x)=2 x g(x)+x^{2} f(x)\;\;\;\;(\because\;g'(x)=f(x))\\ &\Rightarrow F^{\prime \prime}(1)=0+1 \times 3\\ &\Rightarrow F^{\prime \prime}(1)=3\;\;\;\;\;\;\;\;\;\;\ldots (2) \end{aligned}\\\text{From (1) and (2) F(x) has local minimum at x = 1 }

Correct Option (1)

View Full Answer(1)
Posted by

avinash.dongre

NEET 2024 Most scoring concepts

    Just Study 32% of the NEET syllabus and Score up to 100% marks


In the expansion of \left ( \frac{x}{cos\theta }+\frac{1}{x\sin \theta } \right )^{16}, if  L_{1}  is the least value of the term independent of x when \frac{\pi }{8}\leq \theta \leq \frac{\pi }{4} and  L_{2}  is the least value of the term independent of x when \frac{\pi }{16}\leq \theta \leq \frac{\pi }{8}, then the ratio L_{2}:L_{1}  is equal to : 
Option: 1 16:1
Option: 2 8:1
Option: 3 1:8
Option: 4 1:16
 

General Term of Binomial Expansion\left(T_{r+1}\right)^{\mathrm{th}} \text { term is called as general term in }(x+y)^{n}\;\text{and general term is given by}

\mathrm{T}_{\mathrm{r}+1}=^{\mathrm{n}} \mathrm{C}_{\mathrm{r}} \mathrm{\;x}^{\mathrm{n}-\mathrm{r}} \cdot \mathrm{y}^{\mathrm{r}}

Term independent of x: It means term containing x0,

 

Now,

\\\mathrm{T}_{\mathrm{r}+1}=^{16} \mathrm{C}_{\mathrm{r}}\left(\frac{\mathrm{x}}{\cos \theta}\right)^{16-\mathrm{r}}\left(\frac{1}{\mathrm{x} \sin \theta}\right)^{\mathrm{r}}\\\text{for r = 8 term is free from 'x' }\\\begin{aligned} &\mathrm{T}_{9}=^{16} \mathrm{C}_{8} \frac{1}{\sin ^{8} \theta \cos ^{8} \theta}\\ &\mathrm{T}_{9}=^{16} \mathrm{C}_{8} \frac{2^{8}}{(\sin 2 \theta)^{8}}\\ &\text { in } \theta \in\left[\frac{\pi}{8}, \frac{\pi}{4}\right], L_{1}=^{16} \mathrm{C}_{8} 2^{8} \end{aligned}

\\\because \text{Min value of L}_1\;\text{at }\theta=\pi/4\\\text { in } \theta \in\left[\frac{\pi}{16}, \frac{\pi}{8}\right], L_{2}=16 \mathrm{C}_{8} \frac{2^{8}}{\left(\frac{1}{\sqrt{2}}\right)^{8}}=^{16} \mathrm{C}_{8} \cdot 2^{8} \cdot 2^{4}\\\\\because \text{Min value of L}_2\;\text{at }\theta=\pi/8\\\frac{L_{2}}{L_{1}}=\frac{16 \mathrm{C}_{8} \cdot 2^{8} 2^{4}}{^{16} \mathrm{C}_{8} \cdot 2^{8}}=16

Correct option 1

View Full Answer(1)
Posted by

avinash.dongre

The value of \int_{0}^{2x}\frac{x\sin ^{8}x}{\sin ^{8}x+\cos ^{8}x}dx is equal to : 
Option: 1 2\pi
 
Option: 2 4\pi
 
Option: 3 2\pi ^{2}
 
Option: 4 \pi ^{2}
 
 

 

 

Properties of the Definite Integral (Part 2) - King's Property -

Property 4 (King's Property)

This is one of the most important properties of definite integration.

\\\mathbf{\int_{a}^{b}f(x)\;dx=\int_{a}^{b}f(a+b-x)\;dx}

-

 

 

 

Application of Periodic Properties in Definite Integration -

Property 9

If f(x) is a periodic function with period T, then the area under f(x) for n periods would be n times the area under f(x) for one period, i.e.

\mathbf{\int_{0}^{n T} f(x) d x=n \int_{0}^{T} f(x) d x}

-

 

 

 

 

\\I=\int _0^{2\pi }\frac{x\sin ^8x\:}{\sin ^8x+\cos ^8x\:\:}dx\\I=\int _0^{2\pi }\frac{(2\pi-x)\sin ^8(2\pi-x)\:}{\sin ^8(2\pi-x)+\cos ^8(2\pi-x)\:\:}dx\\2I=\int _0^{2\pi }\frac{2\pi \sin ^8x\:}{\sin ^8x+\cos ^8x\:\:}dx\\I=\int _0^{2\pi }\frac{\pi \sin ^8x\:}{\sin ^8x+\cos ^8x\:\:}dx

\\I=\int _0^{2\pi }\frac{\pi \sin ^8x\:}{\sin ^8x+\cos ^8x\:\:}dx\\I=4\int _0^{\pi/2 }\frac{\pi \sin ^8x\:}{\sin ^8x+\cos ^8x\:\:}dx\\I=4\int _0^{\pi/2 }\frac{\pi \sin ^8(\pi/2-x)\:}{\sin ^8(\pi/2-x)+\cos ^8(\pi/2-x)\:\:}dx\\I=2\int_{0}^{\pi/2}\pi dx\\I=\pi^2

View Full Answer(1)
Posted by

avinash.dongre

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads

At 300 K and 1 atm, 15 mL of a gaseous hydrocarbon requires 375 mL air containing 20% O2 by volume for complete combustion.  After combustion, the gases occupy 330 mL.  Assuming that the water formed is in liquid form and the volumes were measured at the same temperature and pressure, the formula of the hydrocarbon is :
Option: 1  C4H8  
Option: 2  C4H10
Option: 3  C3H6
Option: 4  C3H8
 

Volume of N in air = 375 × 0.8 = 300 ml

Volume of O2 in air = 375 × 0.2 = 75 ml
 

C_{x}H_{y} +\left ( x +\frac{y}{4} \right )O_{2} \; \rightarrow \; xCO_{2}(g) + \frac{y}{2} H_{2}O(l)

15ml                15\left ( x +\frac{y}{4} \right )

  0                         0                            15x                 -

 

After combustion total volume

330 =V_{N_{2}} + V_{CO_{2}}

330 = 300 + 15x 

x = 2 

Volume of O2 used

15\left ( x +\frac{y}{4} \right ) = 75

\left ( x +\frac{y}{4} \right ) = 5

y = 12 

So hydrocarbon is = C2H12

None of the options matches it therefore it is a BONUS.

----------------------------------------------------------------------

Alternatively  Solution


 C_{x}H_{y} +\left ( x +\frac{y}{4} \right )O_{2} \; \rightarrow \; xCO_{2}(g) + \frac{y}{2} H_{2}O(l)

15ml              15\left ( x +\frac{y}{4} \right )

  0                         0                            15x                 -

Volume of O2 used

15\left ( x +\frac{y}{4} \right ) = 75

\left ( x +\frac{y}{4} \right ) = 5

If further information (i.e., 330 ml) is neglected, option (C3H8 ) only satisfy the above equation.

View Full Answer(1)
Posted by

Ritika Jonwal

\lim_{n\rightarrow \infty }\left ( \frac{(n+1)(n+2).....3n}{n^{2n}} \right )^{\frac{1}{n}}is equal to
Option: 1 \frac{18}{e^{4}}
Option: 2 \frac{27}{e^{2}}
Option: 3 3\log ^{3-2}
Option: 4 3\log ^{3-2}
 

As we learnt

 

Walli's Method -

 

Definite integral by first principle

\int_{a}^{b}f(x)dx= \left ( b-a \right )\lim_{n \to \infty }\frac{1}{n}\left [ f(a) +f(a+h)+f(a+2h)....\right ]

where

h=\frac{b-a}{n}

- wherein

 

 y=\lim_{n\rightarrow \infty }\left [ \frac{(n+1)(n+2)...(n+2n)}{n^{2n}} \right ]^{1/n}

=\lim_{n\rightarrow \infty }\left [ \left ( 1+\frac{1}{n} \right )\left ( 1+\frac{2}{n} \right ) ...\left ( 1+\frac{2n}{n} \right )\right ]^{1/n}

\Rightarrow \log y=\lim_{n\rightarrow \infty }\frac{1}{n}\left [ \left ( 1+\frac{1}{n} \right )\left ( 1+\frac{2}{n} \right ) ...\left ( 1+\frac{2n}{n} \right )\right ]

=\lim_{n\rightarrow \infty }\frac{1}{n}\sum_{r=1}^{2n}\log\left ( 1+\frac{r}{n} \right )

=\int_{0}^{2}\log\left ( 1+x \right )dx

=\left [ \log(1+x).x \right ]-\int_{0}^{2}\frac{1}{1+x}.xdx

= \left [ x\log(1+x)-x +\log(1+x)\right ]^{2}_{0}

=2\log 3-2+\log 2

\Rightarrow y=\frac{27}{e^{2}}

 

 

View Full Answer(1)
Posted by

avinash.dongre

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE

filter_img