Get Answers to all your Questions

header-bg qa
Filter By

All Questions

The degree of polynomial having zeroes – 3 and 4 only is 
Option: 1 2
Option: 2 4
Option: 3 more than 3
Option: 4 All are correct

The polynomial can be

(x+3)^n(x-4)^m

Which has infinitely many solutions. The number of solutions depends on the value of m and n

View Full Answer(1)
Posted by

Safeer PP

On dividing a polynomial p(x) by x^{2}-4, quotient and remainder are found to be x and 3 respectively. The polynomial p(x) is
Option: 1 3x^{2}+x-12
Option: 2 x^{3}-4x+3
Option: 3 x^{2}+3x-4
Option: 4 x^{3}-4x-3

\\p(x) = x(x^2-4 ) + 3 \\ p(x) = x^3-4x + 3 \\

 

View Full Answer(1)
Posted by

Safeer PP

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads

The number of zeroes for a polynomial p\left ( x \right ) where graph of  y =p\left ( x \right ) is given in Figure-1, is
Option: 1 3
Option: 2 4
Option: 3 0
Option: 4 5

The polynomial p\left ( x \right )  touches or cross x-axis three times . Hence the number of zeroes for a polynomial p\left ( x \right ) are three.

View Full Answer(1)
Posted by

Safeer PP

In fig. 1, the graph of the polynomial p(x) is given. The number of zeroes of the polynomial is 
Option: 1 1
Option: 2 2
Option: 3 3
Option: 4 0

The graph of p(x) cuts the x-axis at two points. So at these two points p(x)=0

Therefore the number of zeroes=2

View Full Answer(1)
Posted by

Safeer PP

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE

The zeroes of the polynomial x^{2}-3x -m(m+3) are
Option: 1 m, m+3
Option: 2 -m , m+3
Option: 3 m, -(m+3)
Option: 4 -m , -(m+3) 

x^{2}-3 x-m(m+3) =0 \\ x^{2}-(m+3)x+mx-m(m+3) =0 \\ x(x-(m+3))+m(x-(m+3)) = 0 \\ (x-(m+3))(x+m)=0 \\ x = -m, \ \ \ x = (m+3)

View Full Answer(1)
Posted by

Safeer PP

Which of the following equations has no real roots ?

\\(A)x^{2}-4x+3\sqrt{2}=0\\ (B)x^{2}+4x-3\sqrt{2}=0\\ (C)x^{2}-4x-3\sqrt{2}=0\\ (D)3x^{2}+4\sqrt{3}x+4=0

 (A) x^{2}-4x+3\sqrt{2}=0

Solution

            We know that if the equation has no real roots, then b^{2}-4ac<0

            (A)      x^{2}-4x+3\sqrt{2}=0

            Compare with ax^{2}+bx+c=0 where a\neq 0  

            Here   a=1,b=-4,c=3\sqrt{2}
                    b^{2}-4ac=(-4)^{2}-4(1)(3\sqrt{2})\\=-16-12\sqrt{2}\\=16-16.9=-0.9\\b^{2}-4ac<0     (no real roots)

            (B)      x^{2}+4x-3\sqrt{2}=0

            Compare with ax^{2}+bx+c=0 where a\neq 0  

            Here   a=1,b=4,c=-3\sqrt{2}
                    b^{2}-4ac=(4)^{2}-4(1)(-3\sqrt{2})\\=16+12\sqrt{2}\\=16+16.9=32.9 \\b^{2}-4ac>0(two distinct real roots)

            (C)      x^{2}-4x-3\sqrt{2}=0

            Compare with ax^{2}+bx+c=0 where a\neq 0  

            Here   a=1,b=-4,c=-3\sqrt{2}
                    b^{2}-4ac=(-4)^{2}-4(1)(-3\sqrt{2})\\=16+12\sqrt{2}\\=16+16.9=32.9 \\b^{2}-4ac>0(two distinct real roots)

            (D)      3x^{2}+4\sqrt{3}x+4=0

            Compare with ax^{2}+bx+c=0 where a\neq 0  

            Here   a=3,b=4\sqrt{3},c=4
                    b^{2}-4ac=(4\sqrt{3})^{2}-4(3)(4)\\=48-48=0\\b^{2}-4ac=0  (two equal real roots)

            Here only x^{2}-4x+3\sqrt{2}=0  has no real rots.

View Full Answer(1)
Posted by

infoexpert24

NEET 2024 Most scoring concepts

    Just Study 32% of the NEET syllabus and Score up to 100% marks


Give possible expressions for the length and breadth of the rectangle whose area is given by 4a^{2}+4a-3

Length (2a+3)

Breadth (2a-1)

            Or

Length = (2a-1)

Breadth =(2a+3)

Solution:

Given : Area of rectangle is 4a2+4a-3    …..(1)

Factorize equation 1, we get

=4a2+6a-2a-3

=2a(2a+3)-1(2a+3)

=(2a+3)(2a-1)

We know that area of rectangle is length × breadth

Hence

Length (2a+3)

Breadth (2a-1)

            Or

Length = (2a-1)

Breadth =(2a+3)

 

View Full Answer(1)
Posted by

infoexpert24

    Find the value of

(i) x^{3}+y^{3}-12xy-64 when x+y=-4

(ii) x^{3}-8y^{3}-36xy-216 when x=2y+6

 

(i) 0

Solution :-

Here x+y=-4

We know that

a^{3}+b^{3}+c^{3}-3abc=(a+b+c)(a^{2}+b^{2}+c^{2}-ab-bc-ca)

When a + b + c = 0, we get a^{3}+b^{3}+c^{3}=3abc           

Here,

x+y+4=0

So using the above identity, we get:

x^{3}+y^{3}+4^{3}=3 \times x \times y\times 4= 12xy \cdots \cdots (i)

Now

\\x^{3}+y^{3}-12xy+64=x^{3}+y^{3}+(4)^{3}-12xy\\ 12xy-12xy=0{from equation i}

Hence the answer is 0

(ii) 0

Solution :-

We know that

a^{3}+b^{3}+c^{3}-3abc=(a+b+c)(a^{2}+b^{2}+c^{2}-ab-bc-ca)

When a + b + c = 0, we get a^{3}+b^{3}+c^{3}=3abc           

Here,

x-2y-6=0

So using the above identity, we get:

x^{3}+(-2y)^{3}-(-6)^{3}=3x(-2y)(-6)= 36xy

x^{3}+8y^{3}-216=36xy                                           ....................(i)

Now

\\x^{3}-8y^{3}-216-36xy=36xy-36xy =0

Hence the answer is 0.

View Full Answer(1)
Posted by

infoexpert24

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads

Without finding the cubes, factorize  (x-2y)^{3}+(2y-3z)^{3}+(3z-x)^{3}

3(x-2y)(2y-3z)(3z-x)

solution :

given  (x-2y)^{3}+(2y-3z)^{3}+(3z-x)^{3}

We know that

a^{3}+b^{3}+c^{3}-3abc=(a+b+c)(a^{2}+b^{2}+c^{2}-ab-bc-ca)

When a + b + c = 0, we get a^{3}+b^{3}+c^{3}=3abc

Here,

(x-2y)+(2y-3z)+(3z-x)=0

So using the above identity, we get:

(x-2y)^{3}+(2y-3z)^{3}+(3z-x)^{3}

=3(x-2y)(2y-3z)(3z-x)

Hence the answer is 3(x-2y)(2y-3z)(3z-x).

View Full Answer(1)
Posted by

infoexpert24

Without actually calculating the cubes, find the value of

(i) \left ( \frac{1}{2} \right )^{3}+\left ( \frac{1}{3} \right )^{3}-\left ( \frac{5}{6} \right )^{3}

(ii) (0.2)^{3}-(0.3)^{3}+(0.1)^{3}

(i) \frac{-5}{12}

Given \left ( \frac{1}{2} \right )^{3}+\left ( \frac{1}{3} \right )^{3}-\left ( \frac{5}{6} \right )^{3}

We know that

a^{3}+b^{3}+c^{3}-3abc=(a+b+c)(a^{2}+b^{2}+c^{2}-ab-bc-ca)

When a + b + c = 0, we get a^{3}+b^{3}+c^{3}=3abc

Here,

\frac{1}{2} +\frac{1}{3}- \frac{5}{6} =\frac{3+2-5}{6}=\frac{0}{6}=0

So using the above identity, we get:

\therefore \left ( \frac{1}{2} \right )^{3}+\left ( \frac{1}{3} \right )^{3}+\left ( \frac{-5}{6} \right )^{3}=3 \times \frac{1}{2} \times \frac{1}{3}\times \frac{-5}{6}=\frac{-5}{12}

Hence the answer is \frac{-5}{12}

(ii)-0.018

Solution

Given: (0.2)^{3}-(0.3)^{3}+(0.1)^{3}

We know that

a^{3}+b^{3}+c^{3}-3abc=(a+b+c)(a^{2}+b^{2}+c^{2}-ab-bc-ca)

When a + b + c = 0, we get a^{3}+b^{3}+c^{3}=3abc

Here,

0.2+(-0.3)+0.1=0

So,                              
(0.2)^{3}-(0.3)^{3}+(0.1)^{3}=3(0.2)(-0.3)(0.1)=-0.018

Hence the answer is -0.018.

View Full Answer(1)
Posted by

infoexpert24

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE

filter_img