Get Answers to all your Questions

header-bg qa
Filter By

All Questions

(x^{2}+1)^{2}-x^{2}=0  has

            (A) four real roots                                 (B) two real roots

            (C) no real roots                                    (D) one real root.

(C) no real roots

Solution

Here the given equation is (x^{2}+1)^{2}-x^{2}=0  

                        (x^{2})^{2}+(1)^{2}+2(x^{2})(1)-x^{2}=0           [using? ]
                     x^{4}+1+2x^{2}-x^{2}=0\\ x^{4}+x^{2}+1=0

            Put       x^{2}=z

                        z^{2}+z+1=0

            Compare with az^{2}+bz+c=0 where a \neq 0

            Here    a=1,b=1,c=1
                       b^{2}-4ac=(1)^{2}-4(1)(1)\\ =1-4=-3\\ b^{2}-4ac<0

            Here the given equation has no real roots.

View Full Answer(1)
Posted by

infoexpert24

Which of the following equations has no real roots ?

\\(A)x^{2}-4x+3\sqrt{2}=0\\ (B)x^{2}+4x-3\sqrt{2}=0\\ (C)x^{2}-4x-3\sqrt{2}=0\\ (D)3x^{2}+4\sqrt{3}x+4=0

 (A) x^{2}-4x+3\sqrt{2}=0

Solution

            We know that if the equation has no real roots, then b^{2}-4ac<0

            (A)      x^{2}-4x+3\sqrt{2}=0

            Compare with ax^{2}+bx+c=0 where a\neq 0  

            Here   a=1,b=-4,c=3\sqrt{2}
                    b^{2}-4ac=(-4)^{2}-4(1)(3\sqrt{2})\\=-16-12\sqrt{2}\\=16-16.9=-0.9\\b^{2}-4ac<0     (no real roots)

            (B)      x^{2}+4x-3\sqrt{2}=0

            Compare with ax^{2}+bx+c=0 where a\neq 0  

            Here   a=1,b=4,c=-3\sqrt{2}
                    b^{2}-4ac=(4)^{2}-4(1)(-3\sqrt{2})\\=16+12\sqrt{2}\\=16+16.9=32.9 \\b^{2}-4ac>0(two distinct real roots)

            (C)      x^{2}-4x-3\sqrt{2}=0

            Compare with ax^{2}+bx+c=0 where a\neq 0  

            Here   a=1,b=-4,c=-3\sqrt{2}
                    b^{2}-4ac=(-4)^{2}-4(1)(-3\sqrt{2})\\=16+12\sqrt{2}\\=16+16.9=32.9 \\b^{2}-4ac>0(two distinct real roots)

            (D)      3x^{2}+4\sqrt{3}x+4=0

            Compare with ax^{2}+bx+c=0 where a\neq 0  

            Here   a=3,b=4\sqrt{3},c=4
                    b^{2}-4ac=(4\sqrt{3})^{2}-4(3)(4)\\=48-48=0\\b^{2}-4ac=0  (two equal real roots)

            Here only x^{2}-4x+3\sqrt{2}=0  has no real rots.

View Full Answer(1)
Posted by

infoexpert24

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads

Which of the following equations has two distinct real roots?

\\(A)2x^{2}-3\sqrt{2}x+\frac{9}{4}=0\\ (B)x^{2}+x-5=0\\ (C)x^{2}+3x+2\sqrt{2}=0\\ (D)5x^{2}-3x+1=0

We know that if roots are distinct and real, then b^{2}-4ac>0

 (A)2x^{2}-3\sqrt{2}x+\frac{9}{4}=0

\text{compare with } ax^{2}+bx+c=0 \text{where} a \neq 0

 a=2, b=-3\sqrt{2},c=\frac{9}{4}
  \\b^{2}-4ac=\left ( -\frac{3}{\sqrt{2}} \right )^{2}-4(2)\left ( \frac{9}{4} \right )\\ =9 \times 2-18\\ =18-18=0\\ b^{2}-4ac=0\text{(two equal real roots)}    

  (B)\ x^{2}+x-5=0
 b^{2}-4ac=(1)^{2}-4(1)(-5)\\ =1+20 =21\\ b^{2}-4ac>0\text{(two distinct real roots) }                              

  (C)\ x^{2}+3x+2\sqrt{2}=0

           
  \\b^{2}-4ac=(3 )^2-4(1) ( 2\sqrt{2} )\\ =9 -8\sqrt{2}\\ =9-11.3=-2.3\\ b^{2}-4ac<0\text{(no real roots)}  

(D)\ 5x^{2}-3x+1=0        
  \\b^{2}-4ac=\left (-3 \right )^{2}-4(5)\left ( 1 \right )\\ =9 -20\\ =-11\\ b^{2}-4ac<0\text{(no real roots)}  

Here only option (B)  have two distinct real roots.

View Full Answer(1)
Posted by

infoexpert24

The quadratic equation 2x^{2}-\sqrt{5}x+1=0  has

(A) two distinct real roots                                 (B) two equal real roots

(C) no real roots                                                (D) more than 2 real roots

(C) no real roots

\text{Here the given quadratic equation is }2x^{2}-\sqrt{5}x+1=0

\text{ Compare with }ax^{2}+bx+c=0 \text{ where } a \neq 0
 \\a=2, b=\sqrt{5},c=1\\ b^{2}-4ac=(-\sqrt{5})^{2}-4(2)(1\\ =5-8=-3

b^{2}-4ac<0

\text{Hence the equation }2x^{2}-\sqrt{5}x+1=0\text{ has no real roots.}  

View Full Answer(1)
Posted by

infoexpert24

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE

Which constant must be added and subtracted to solve the quadratic equation9x^{2}+\frac{3}{4}x-\sqrt{2}=0  by the method of completing the square?

\\(A)\frac{1}{8}\\ (B)\frac{1}{64}\\ (C)\frac{1}{4}\\ (D)\frac{9}{64}

Here the given quadratic equation is 

 9x^{2}+\frac{3}{4}x-\sqrt{2}=0
 \\(3)^{2}+\frac{1}{4}(3x)-\sqrt{2}=0\\ (3x)^{2}+2 \times \left ( \frac{1}{8} \right )\times(3x)-\sqrt{2}=0  

\text{[add and subtract}\left ( \frac{1}{8} \right )^{2}] 

\\(3x)^{2}+2 \times \left ( \frac{1}{8} \right )\times(3x)+\left ( \frac{1}{8} \right )^{2}-\left ( \frac{1}{8} \right )^{2}-\sqrt{2}=0\\ (3x)^{2}+2 \times \left ( \frac{1}{8} \right )\times(3x)+\left ( \frac{1}{8} \right )^{2}=\left ( \frac{1}{8} \right )^{2}+\sqrt{2}\\ \because a^{2}+b^{2}+2ab=(a+b)^{2}\\

So        

 \left (3x+ \frac{1}{8} \right )^{2}=\frac{1+64\times\sqrt{2}}{64} \text{ Hence}\left (\frac{1}{8} \right )^{2}=\frac{1}{64}  \text{ should be added and subtracted in the equation} 9x^{2}+\frac{3}{4}x-\sqrt{2}=0  

\text{ for solving by completing the square method. }

View Full Answer(1)
Posted by

infoexpert24

Values of k for which the quadratic equation 2x^{2}-kx+k=0  has equal roots is

(A) 0 only         (B) 4                (C) 8 only         (D) 0, 8

(D) 0, 8

Here the given equation is 2x^{2}-kx+k=0

Compare with ax^{2}+bx+c=0 where a \neq 0  

 a=2,b=-k,c=k

It is given that roots are equal.

 Hence

  \\b^{2}-4ac=0\\ (-k)^{2}-4(2)(k)=0\\ k^{2}-8k=0\\ k(k-8)=0\\ k-8=0 \;\;\;\;\;\; k=0\\ k=8\\ k=0,8

 Hence for the value of k = 0, 8 the equation ax^{2}+bx+c=0  has equal roots.

View Full Answer(1)
Posted by

infoexpert24

NEET 2024 Most scoring concepts

    Just Study 32% of the NEET syllabus and Score up to 100% marks


Which of the following equations has the sum of its roots as 3?          

\\(A)2x^{2}-3x+6=0\\ (B)-x^{2}+3x-3=0\\ (C)\sqrt{2}x^{2}-\frac{3}{\sqrt{2}}x+1=0\\ (D)3x^{2}-3x+3=0  

 (B) (B)-x^{2}+3x-3=0              

If (B)ax^{2}+bx+c=0  is a quadratic equation the sum of its roots are -\frac{b}{a}

(A)   
        2x^{2}-3x+6=0           

         Here b=-3,a=2

            Sum of its roots =-\frac{b}{a}-\left ( \frac{-3}{2} \right )=\frac{3}{2}

(B)      

            -x^{2}+3x-3=0

            Here b=-3,a=3

            Sum of its roots =-\frac{b}{a}=\frac{-3}{-1}=3

(C)       

            \sqrt{2}x^{2}-\frac{3}{\sqrt{2}}x+1=0   

            Here b=\frac{-3}{\sqrt{2}}, a=\sqrt{2}

            Sum of its roots = -\frac{b}{a}=-\left (\frac{-3}{\sqrt{2}} \right )\times \sqrt{2}=\frac{3}{2}

(D)     

            3x^{2}-3x+3=0

            Here b=-3,a=3

            Sum of its roots =-\frac{b}{a}=\frac{(-3)}{3}=\frac{3}{3}=1

            Hence only B has sum of its roots 3

View Full Answer(1)
Posted by

infoexpert24

If \frac{1}{2}  is a root of the equation x^{2}+kx-\frac{5}{4}=0 , then the value of k is

(A)2\\ (B)-2\\ (C)\frac{1}{4}\\ (D)\frac{1}{2}

(A) 2

Solution

As we know that if \frac{1}{2}  is a root of the equation x^{2}+kx-\frac{5}{4}=0  then x=\frac{1}{2}  should satisfy its equation.   

Put       x=\frac{1}{2}

 \\\left (\frac{1}{2} \right )^{2}+k\left (\frac{1}{2} \right )-\frac{5}{4}=0\\ \frac{1}{4}+\frac{k}{2}-\frac{5}{4}=0\\ \frac{1+2k-5}{4}=0\\ 2k-4=0\\ 2k=4\\ k=\frac{4}{2}=2\\ k=2

Hence value of k is 2.            

View Full Answer(1)
Posted by

infoexpert24

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads

Which of the following equations has 2 as a root ?   

\\(A)x^{2}-4x+5=0\\ (B)x^{2}+3x-12=0\\ (C)2x^{2}-7x+6=0\\ (D)3x^{2}-6x-2=0

(C)(C)2x^{2}-7x+6=0

Solution

            (A)      x^{2}-4x+5=0                       

            Put       x = 2

                        (2)^{2}-4(2)+5=0\\ 4-8+5=0\\ 9-8=0\\ 1 \neq 0
(B)

     x^{2}+3x-12=0\\ put\;\;x=2\\ (2)^{2}+3(2)-12=0\\ 4+6-12=0\\ 10-12=0\\ -2\neq0        

(C)
                  2x^{2}-7x+6=0\\ put\;\;x=2\\ 2(2)^{2}-7(2)+6=0\\ 8-14+6=0\\ 14-14=0\\ 0= 0

(D)    

                3x^{2}-6x-2=0\\ put\;\;x=2\\ 3(2)^{2}-6(2)-2=0\\ 12-12-2=0\\ -2\neq 0    

        Hence option (C) is only satisfy x = 2.

            Hence C has 2 as a root.

View Full Answer(1)
Posted by

infoexpert24

Which of the following is not a quadratic equation?

\\(A)2(x-1)^{2}=4x^{2}-2x+1\\ (B)2x-x^{2}=x^{2}+5\\ (C)(\sqrt{2}x+\sqrt{3})^{2}+x^{2}=3x^{2}-5x\\ (D)(x^{2}+2x)^{2}=x^{4}+3+4x^{3}

 (C)(\sqrt{2}x+\sqrt{3})^{2}+x^{2}=3x^{2}-5x

Quadratic equation: A quadratic equation in x is an equation that can be written in the standard form ax^{2} + bx + c = 0, a \neq 0

 Where a, b and c are real numbers

  2(x-1)^{2}=4x^{2}-2x+1

  2(x^{2}+1-2x)=4x^{2}-2x+1              

[using (a – b)2 = a2 + b2 – 2ab]
  \\2x^{2}+2-4x-4x^{2}+2x-1=0\\ -2x^{2}-2x+1=0

It is a quadratic equation because it is in the form

ax^{2} + bx + c = 0

(B)       

        \\2x-x^{2}=x^{2}+5\\ 2x-x^{2}-x^{2}-5=0\\ -2x^{2}+2x-5=0\\ -2x^{2}+2x-5=0      

      It is a quadratic equation because it is in the form ax^{2} + bx + c = 0

(C)     
(\sqrt{2}x+\sqrt{3})^{3}+x^{2}=3x^{2}-5x\\ (\sqrt{2}x)^{2}+(\sqrt{3})^{2}+2(\sqrt{2}x)(\sqrt{3})+x^{2}=x^{2}-5x      \left [using \;(a+b)^{2}=a^{2}+b^{2}+2ab \right ]

2x^{2}+3+2\sqrt{6}x+x^{2}-3x^{2}+5x=0\\ (2\sqrt{6}+5)x+3=0

        It is not in the form of ax^{2} + bx + c = 0

            Hence it is not a quadratic equation.

(D)     
            (x^{2} + 2x)^{2} = x^{4} + 3 + 4x^{3}\\ (x^{2})^{2} + (2x)^{2} + 2(x^{2})(2x) = x^{4} + 3 + 4x^{3}     \left [using \;(a+b)^{2}=a^{2}+b^{2}+2ab \right ]
            x^{4} + 4x^{2} + 4x^{3} - x^{4} - 3 - 4x^{3} = 0\\ 4x^{2}-3=0

            It is in the form of ax^{2} + bx + c = 0

            Hence it is a quadratic equation

            Only option (C) is not in the form of ax^{2} + bx + c = 0

            Hence (C) is not a quadratic equation.

View Full Answer(1)
Posted by

infoexpert24

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE

filter_img