Get Answers to all your Questions

header-bg qa
Filter By

All Questions

For which values of a and b, are the zeroes of q(x) = x^3 + 2x^2 + a also the zeroes of the polynomial p(x) = x^5 - x^4 - 4x^3 + 3x^2 + 3x + b? Which zeroes of p(x) are not the zeroes of q(x)?

Answer. [2, 1]

Solution.        

Given :-

q(x) = x^3 + 2x^2 + a, p(x) = x^5 - x^4 - 4x^3 + 3x^2 + 3x + b

Hence, q(x) is a factor of p(x) use divided algorithm

Since x^3 + 2x^2 + a is a factor hence remainder = 0

x^2(-1 - a) + 3x(1 + a) + (b - 2a) = 0.x^2 + 0.x + 0

By comparing

– 1 – a = 0                               b – 2a = 0

a = – 1                                     2a = b

                                                put a = –1

                                                2(–1) = b

                                                 b = –2

Hence, a = –1, b = –2

x^5 - x^4 - 4x^3 + 3x^2 + 3x - 2 = (x^3 + 2x^2 - 1) (x^2 - 3x + 2)

= (x^3 + 2x^2- 1) (x^2 - 2x - x + 2)

= (x^3 + 2x^2 - 1) (x(x - 2) - 1(x - 2))

= (x^3 + 2x^2 -1) (x - 2) (x - 1)

x – 2 = 0                                  x – 1 = 0

x = 2                                        x = 1

Hence, 2, 1 are the zeroes of p(x) which are not the zeroes of q(x).

 

View Full Answer(1)
Posted by

infoexpert21

Given that x-\sqrt{5}  is a factor of the cubic polynomial x^3 -3 \sqrt{5}x^2 + 13x - 3\sqrt{5} ,find all the zeroes of the polynomial.

Answer.  \sqrt{5},\sqrt{5}+\sqrt{2}, \sqrt{5}-\sqrt{2}

Solution.        

The given cubic polynomial is x^3 -3 \sqrt{5}x^2 + 13x - 3\sqrt{5}

Hence x-\sqrt{5}  is a factor

Use divided algorithm

x^3 - 3\sqrt{3} x^2 + 13x - 3\sqrt{5}=(x-\sqrt{5}) (x^{2}-2\sqrt{5}+3)

                     =(x-\sqrt{5}) (x^{2}-2\sqrt{5}+3)

                    x^{2}-2\sqrt{5}+3

a = 1, b = -2\sqrt{5} , c = 3

x=\frac{-b\pm \sqrt{b^{2}}-4ac}{2a}

x=\frac{2\sqrt{5}\pm \sqrt{20-12}}{2}

x=\frac{2\sqrt{5}\pm 2\sqrt{2}}{2}=\sqrt{5}\pm \sqrt{2}

x=\sqrt{5}+\sqrt{2}, \sqrt{5}-\sqrt{2}

 

Hence, \sqrt{5},\sqrt{5}+\sqrt{2}, \sqrt{5}-\sqrt{2}  are the zeroes of the polynomial.

View Full Answer(1)
Posted by

infoexpert21

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads

Find k so that x^2 + 2x + k is a factor of 2x^4 + x^3 - 14x^2 + 5x + 6. Also find all the zeroes of the two polynomials.

The given polynomial is 2x^4 + x^3 - 14x^2 + 5x + 6

Here, x^2 + 2x + k is a factor of 2x^4 + x^3 - 14x^2 + 5x + 6

Use division algorithm

Here, x(7k + 21) + (6 + 8k + 2k^2) is remainder

It is given that x^2 + 2x + k is a factor hence remainder = 0

x(7k + 21) + (6 + 8k + 2k^2) = 0.x + 0

By comparing L.H.S. and R.H.S.

7k + 21 = 0

k = – 3                         ….(1)

2k^2 + 8k + 6 = 0

2k^2 + 2k + 6k + 6 = 0

2k(k + 1) + 6(k + 1) = 0

(k + 1) (2k + 6) = 0

k = –1, –3                    …..(2)

From (1) and (2)

k = –3

Hence, 2x^4 + x^3 - 14x^2 + 5x + 6 = (x^2 + 2x + k) (2x^2 - 3x - 8 - 2k)

Put k = –3

= (x^2 + 2x - 3) (2x^2 - 3x - 8 + 6)

= (x^2 + 2x - 3) (2x^2 - 3x - 2)

= (x^2 + 3x - x - 3) (2x^2 - 4x + x - 2)

= (x(x + 3) - 1(x + 3)) (2x(x - 2) + 1(x - 2))

= (x + 3)(x -1)(x - 2) (2x + 1)

x + 3 = 0                      x – 1 = 0                      x – 2 = 0                      2x + 1 = 0

x = –3                          x = 1                            x = 2                            2x = – 1

                                                                                                             x=\frac{-1}{2}

Here zeroes of  x^2 + 2x - 3is –3, 1

Zeroes of 2x^2 - 3x - 2 is 2, \frac{-1}{2} .

View Full Answer(1)
Posted by

infoexpert21

Given that \sqrt{2} is a zero of the cubic polynomial 6x^3 + \sqrt{2}x^2 - 10x - 4\sqrt{2} , find its other two zeroes.

Answer.   \left [\frac{-2\sqrt{2}}{3}, \frac{-1}{\sqrt{2}} \right ]

Given cubic polynomial is 6x^3 + \sqrt{2}x^2 - 10x - 4\sqrt{2}

If \sqrt{2}  is a zero of the polynomial then (x – \sqrt{2} ) is a factor of 6x^3 + \sqrt{2}x^2 - 10x - 4\sqrt{2}

6x^3 + \sqrt{2} x^2 - 10x -4\sqrt{2} = (6x^2 + 7\sqrt{2} x + 4) (x -\sqrt{2} )

= (6x^2 + 4\sqrt{2} x + 3\sqrt{2} x + 4\sqrt{2}) (x -\sqrt{2} )

= (2x(3x + 2\sqrt{2} ) +\sqrt{2} (3x + 2\sqrt{2} )) (x -\sqrt{2} )

= (3x + 2 \sqrt{2}) (2x +\sqrt{2} ) (x -\sqrt{2} )=0

3x + 2\sqrt{2} = 0                                 2x + \sqrt{2} = 0

x=\frac{-2\sqrt{2}}{3}                                     x=\frac{-1}{\sqrt{2}}                    

Hence, \left [\frac{-2\sqrt{2}}{3}, \frac{-1}{\sqrt{2}} \right ]  are the other two zeroes.

 

View Full Answer(1)
Posted by

infoexpert21

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE

Given that the zeroes of the cubic polynomial x^3 -6x^2 + 3x + 10 are of the form a, a + b, a + 2b for some real numbers a and b, find the values of a and b as well as the zeroes of the given polynomial.

Answer. [5, 2, –1]         

Solution. Here the given cubic polynomial is x^3 -6x^2 + 3x + 10

A = 1, B = –6, C = 3, D = 10

Given that, \alpha = a, \beta = a + b, \gamma = a + 2b

We know that, \alpha +\beta +\gamma =\frac{-B }{A}

a + a + b + a + 2b =\frac{-(-6)}{1}

3a + 3b = 6

3(a + b) = 6

a + b = 2                                  …..(1)

\alpha \beta +\beta \gamma +\alpha = \frac{C}{A}

a(a + b) + (a + b) (a + 2b) + (a + 2b) (a) =\frac{3}{1}

a(2) + 2(a + 2b) + a^2 + 2ab = 3     (Q  a + b = 2)

2a + 2a + 4b + a^2 + 2ab = 3

4a + 4b + a^2 + 2ab = 3

4a + 4(2 - a) + a^2 + 2a(2 - a) = 3               (Q  a + b = 2)

4a + 8 - 4a + a^2 + 4a - 2a^2 = 3

a^2 + 4a - 2a^2 + 8 - 3 = 0

-a^2 + 4a + 5 = 0

a^2 - 4a - 5 = 0

a^2 - 5a + a - 5 = 0

a(a - 5)+1 (a - 5) = 0

(a -5) ( a + 1) = 0

a = 5, –1

Put a = 5 in (1)                                    put a = –1 in (1)

5 + b = 2                                              –1 + b = 2

b = –3                                                  b = 3

Hence, value of a = 5, b = –3 and a = –1, b = 3

put a = 5, b = –3 and we get zeroes

a = 5

a + b = 5 – 3 = 2

a + 2b = 5 + 2(–3) = –1

Hence, zeroes are 5, 2, –1.

View Full Answer(1)
Posted by

infoexpert21

For each of the following, find a quadratic polynomial whose sum and product respectively of the zeroes are as given. Also find the zeroes of these polynomials by factorisation.

(i)\frac{-8}{3},\frac{4}{3} 

(ii) \frac{21}{8},\frac{5}{16}

(iii) -2\sqrt{3}, -9

(iv) \frac{-3}{2\sqrt{5}},-\frac{1}{2}

(i)  Answer. \left [ -2 , -\frac{2}{3}\right ]

Solution. Zeroes : zeroes of the polynomial are the value(s) that makes it equal to 0.

Here, sum of zeroes =\frac{-8}{3}

Product of zeroes =\frac{4}{3}

Let p(x) is the required polynomial

p(x) = x2 – (sum of zeroes)x + (product of zeroes)

=x^{2}-\left (\frac{-8}{3} \right )x+\frac{4}{3}

=x^{2}+\frac{8}{3}x+\frac{4}{3}

Multiply by 3

p(x) = 3x^2 + 8x + 4

Hence, 3x^2 + 8x + 4 is the required polynomial

p(x) = 3x^2 + 8x + 4

= 3x^2 + 6x + 2x + 4

= 3x(x + 2) + 2(x + 2)

= (x + 2) (3x + 2)=0

x = -2,\frac{2}{3}  are the zeroes of p(x).

(ii) Answer. \left [\frac{5}{2}, \frac{1}{8} \right ]

Solution. Zeroes : zeroes of the polynomial are the value(s) that makes it equal to 0.

Here, sum of zeroes =\frac{21}{8}

Product of zeroes =\frac{5}{16}

Let p(x) is the required polynomial

p(x) = x2 – (sum of zeroes)x + (product of zeroes)

=x^{2}-\left (\frac{21}{8} \right )x+\frac{5}{16}

=x^{2}-\frac{21}{8} x+\frac{5}{16}

Multiply by 16 we get

p(x) = 16x^2 - 42x + 5

Hence, 16x^2 - 42x + 5 is the required polynomial

p(x) = 16x^2 - 42x + 5

= 16x^2 - 40x -2x + 5

=8x(2x - 5) - 1(2x - 5)

=(2x - 5) (8x - 1)=0

x=\frac{5}{2}, \frac{1}{8}  are the zeroes of p(x).

(iii) Answer. \left [-3\sqrt{3}, \sqrt{3} \right ]    

Solution. Zeroes : zeroes of the polynomial are the value(s) that makes it equal to 0.

Here, sum of zeroes -2\sqrt{3}

Product of zeroes = –9

Let p(x) is required polynomial

p(x) = x2 – (sum of zeroes)x + (product of zeroes)

=x^{2 }-(-2\sqrt{3})x+(-9)

=x^{2 } +2\sqrt{3}x+(-9)

p(x)=x^{2 } +2\sqrt{3}x+(-9)

Hence, x^{2 } +2\sqrt{3}x+(-9)  is the required polynomial

p(x)=x^{2 } +2\sqrt{3}x+(-9)

=x^{2 } +3\sqrt{3}x-\sqrt{3}x+(-9)

=x (x+3\sqrt{3})- \sqrt{3}(x + 3 \sqrt{3})

=(x+3\sqrt{3})(x - \sqrt{3})=0

x =-3\sqrt{3}, \sqrt{3}  are the zeroes of p(x)

(iv) Answer. \left [\frac{\sqrt{5}}{2}, \frac{-1}{\sqrt{5}} \right ]

Solution. Zeroes : zeroes of the polynomial are the value(s) that makes it equal to 0.

Here sum of zeroes \frac{-3}{2\sqrt{5}}

Product of zeroes =-\frac{1}{2}

Let p(x) is the required polynomial

p(x) = x2 – (sum of zeroes)x + (product of zeros)

p(x)=x^{2}-\left (\frac{-3}{2\sqrt{5}} \right )x+ \frac{-1}{2}

p(x)=x^{2}+\frac{3}{2\sqrt{5}} x- \frac{1}{2}

Multiplying by 2 \sqrt{5}  we get

p(x)=2 \sqrt{5}x^{2}+3x-\sqrt{5}

Hence, 2 \sqrt{5}x^{2}+3x-\sqrt{5}  is the required polynomial

p(x)=2 \sqrt{5}x^{2}+3x-\sqrt{5}

=2 \sqrt{5}x^{2}+5x-2x -\sqrt{5}

=\sqrt{5}(2x+\sqrt{5})-1(2x+\sqrt{5})

=(\sqrt{5}x -1)(2x+\sqrt{5})

\left [\frac{-\sqrt{5}}{2}, \frac{1}{\sqrt{5}} \right ]  are the zeroes of p(x).

View Full Answer(1)
Posted by

infoexpert21

NEET 2024 Most scoring concepts

    Just Study 32% of the NEET syllabus and Score up to 100% marks


prove that: (a+b+c)^{3}-a^{3}-b^{3}-c^{3}=3(a+b)(b+c)(c+a)

prove that: (a+b+c)^{3}-a^{3}-b^{3}-c^{3}=3(a+b)(b+c)(c+a)

Taking left hand side

(a+b+c)^{3}-a^{3}-b^{3}-c^{3}=\left ( (a+b+c)^{3}-a^{3} \right )\left ( b^{3}+c^{3} \right )\cdots \cdots \cdots \cdots (i)              

Now using the identity

x^{3}-y^{3}=(x-y)(x^{2}+y^{2}+xy)

So,

\left ( (a+b+c)^{3}-a^{3} \right )=(a+b+c-a)\left [ (a+b+c)^{2}+a^{2}+a(a+b+c) \right ]

Now using x^{3}-y^{3}=(x-y)(x^{2}+y^{2}+xy)

 (b^{3}+c^{3})=\left [ (b+c)(b^{2}+c^{2}-bc) \right ]

 So equation (i) becomes:

\\(a+b+c)^{3}-a^{3}-b^{3}-c^{3}\\ =(a+b+c-a)\left [ (a+b+c)^{2}+a^{2}+a(a+b+c) \right ]-\left [ (b+c)(b^{2}+c^{2}-bc) \right ]\\ =(b+c)\left [ (a+b+c)^{2}+a^{2}+a(a+b+c)\right ]\left [ (b+c)(b^{2}+c^{2}-bc) \right ]\cdots \cdots \cdots (ii)\\

Now,

(a+b+c)^{3}-a^{3}-b^{3}-c^{3}\\ =(b+c)\left [ a^{2}+b^{2}+c^{2}+2ab+2bc+2ca+a^{2}+a^{2}+ab+ac-(b^{2}+c^{2}-bc) \right ]\\ =(b+c)\left [ b^{2}+c^{2}+3a^{2}+3ab+3ac-b^{2}-c^{2}+3bc \right ]\\ =(b+c)\left [ 3(a^{2})+ab+ac+bc \right ]\\ =3(b+c)\left [ a(a+b)+c(a+b) \right ]\\ =3(b+c)\left [ (a+b)(b+c) \right ]\\ =3(a+b)(b+c)(c+a)=R.H.S

Hence proved.

View Full Answer(1)
Posted by

infoexpert24

If a + b + c = 5 and ab + bc + ca = 10, then prove that a3 + b3 + c3 –3abc = – 25

Given: (a + b + c) = 5, ab + bc + ca = 10

To Prove: a3 + b3 + c3 –3abc = – 25

We know that

(a+b+c)^{2}=a^{2}+b^{2}+c^{2}+2(ab+bc+ca)\\ (5)^{2}=a^{2}+b^{2}+c^{2}+2(10)\\ 25=a^{2}+b^{2}+c^{2}+20\\ 25-20=a^{2}+b^{2}+c^{2}\\ 5=a^{2}+b^{2}+c^{2}

Now,

 a^{3}+b^{3}+c^{3}-3abc=(a+b+c)(a^{2}+b^{2}+c^{2}-ab-bc-ca)

Putting the values, we get: 

a^{3}+b^{3}+c^{3}-3abc=5\left [ 5-(ab+bc+ca) \right ]\\ =5(5-10)\\ =5(-5)\\ =-25\\=R.H.S

Hence proved.                                              

View Full Answer(1)
Posted by

infoexpert24

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads

If a, b, c are all non-zero and a + b + c = 0, prove that \frac{a^{2}}{bc}+\frac{b^{2}}{ca}+\frac{c^{2}}{ab}=3

Given, \frac{a^{2}}{bc}+\frac{b^{2}}{ca}+\frac{c^{2}}{ab}=3

L.H.S. \frac{a^{2}}{bc}+\frac{b^{2}}{ca}+\frac{c^{2}}{ab}

Taking LCM of denominators, we get

L.H.S \frac{a^{3}+b^{3}+c^{3}}{abc}

Now we know that if a + b + c = 0 then a^{3}+b^{3}+c^{3}=3abc

Putting the value in above equation:

 L.H.S = \frac{3abc}{abc} = 3 = RHS

Hence proved.

View Full Answer(1)
Posted by

infoexpert24

Multiply: x^{2}+4y^{2}+z^{2}+2xy+xz-2yz by \left ( -z+x-2y \right )

x^{3}-8y^{3}-z^{3}-6xyz

Solution

We have, \left (x^{2}+4y^{2}+z^{2}+2xy+xz-2yz \right ) \left ( -z+x-2y \right )                  

This can be written as:

 \left ( x+(-2y)+(-z) \right )\left ((x)^{2}+(-2y)^{2}+(z)^{2}-(x)(-z)-(-z)(-2y)\right )\cdots \cdots (i)                                

 We know that

a^{3}+b^{3}+c^{3}-3abc=(a+b+c)(a^{2}+b^{2}+c^{2}-ab-bc-ca)

So comparing the RHS of equation (i) with the above identity:

a = x

b = -2y

 c = -z

We get:

\left ( x+(-2y)+(-z) \right )\left ((x)^{2}+(-2y)^{2}+(z)^{2}-(x)(-z)-(-z)(-2y)\right )\\ =(x)^{3}+(-2y)^{3}+(-z)^{3}-3(x)(-2y)(-z)\\ =x^{3}-8y^{3}-z^{3}-6xyz

Hence the answer is x^{3}-8y^{3}-z^{3}-6xyz.  

View Full Answer(1)
Posted by

infoexpert24

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE

filter_img