Get Answers to all your Questions

header-bg qa
Filter By

All Questions

Find the roots of the following quadratic equations by the factorisation method

(i)2x^{2}+\frac{5}{3}x-2=0

(ii)\frac{2}{5}x^{2}-x-\frac{3}{5}=0

(iii)3 \sqrt{2}x^{2}-5x-\sqrt{2}=0

(iv)3x^{2}+5\sqrt{5}x-10=0

(v)21x^{2}-2x+\frac{1}{21}=0

(ii) 3,-\frac{1}{2}

Solution

 \\\frac{2}{5}x^{2}-x-\frac{3}{5}=0\\ \frac{2x^{2}-5x-3}{5}=0\\ 2x^{2}-5x-3=0\\ 2x^{2}-6x+x-3=0\\ 2x(x-3)+1(x-3)=0\\ (x-3)(2x+1)=0\\ x-3=0\;\;\;\;\;\;\;\;\;\;\;\;\; 2x+1=0\\ x=3\;\;\;\;\;\;\;\;\;\;\;\;\; 2x=-1 \;\;\;\;x=\frac{-1}{2}\\

Hence \frac{-3}{2},\frac{2}{3} are the roots of the equation.

(i) \frac{-3}{2},\frac{2}{3}

Solution

 2x^{2}+\frac{5}{3}x-2=0\\ \frac{6x^{2}+5x-6}{3}=0\\ 6x^{2}+5x-6=0\\ 6x^{2}+9x-4x-6=0\\ 3x(2x+3)-2(2x+3)=0\\ (2x+3)(3x-2)=0\\ 2x+3=0\;\;\;\;\;\;\;\;\;\;\;\;\; 3x-2=0\\ 2x=-3\;\;\;\;\;\;\;\;\;\;\;\;\; 3x=2\\ x=\frac{-3}{2}\;\;\;\;\;\;\;\;\;\;\;\;\; x=\frac{2}{3}\\

Hence 3,-\frac{1}{2} are the roots of the equation.

(iii) \sqrt{2},-\frac{1}{3\sqrt{2}}

Solution

   3\sqrt{2}x^{2}-5x-\sqrt{2}=0\\ 3\sqrt{2}x^{2}-6x+x-\sqrt{2}=0\\ 3\sqrt{2}x(x-\sqrt{2})+1(x-\sqrt{2})=0\\ (x-\sqrt{2})(3\sqrt{2}x+1)=0\\ 3\sqrt{2}x+1=0 \;\;\;\;\;\;\;\;\;\;\;\;\;\;\; x-\sqrt{2}=0\\ 3\sqrt{2}x=-1 \;\;\;\;\;\;\;\;\;\;\;\;\;\;\; x=\sqrt{2}\\ x=\frac{-1}{3\sqrt{2}}

Hence \sqrt{2},-\frac{1}{3\sqrt{2}} are root of the equation 3\sqrt{2}x^{2}-5x-\sqrt{2}=0\\

(iv) -2\sqrt{5},-\frac{\sqrt{5}}{3}

Solution

   3x^{2}+5\sqrt{5}x-10=0\\ 3x^{2}+6\sqrt{5}x-\sqrt{5}x-10=0\\ 3x(x+2\sqrt{5})-\sqrt{5}(x+2\sqrt{5})=0\\ (3x-\sqrt{5})(x+2\sqrt{5})=0\\ 3x-\sqrt{5}=5 \;\;\;\;\;\;\;\;\;\;\;\;\;\;\; x+2\sqrt{5}=0\\ 3x=\sqrt{5} \;\;\;\;\;\;\;\;\;\;\;\;\;\;\; x=-2\sqrt{5}\\ x=\frac{\sqrt{5}}{3}

Hence -2\sqrt{5},-\frac{\sqrt{5}}{3} are root of the equation 3x^{2}+5\sqrt{5}x-10=0

(v) \frac{1}{21}

solution

21x^{2}-2x+\frac{1}{21}=0\\ 21x^{2}-x-x+\frac{1}{21}=0\\ x(21x-1)-\frac{1}{21}(21x-1)=0\\ (21x-1)\left ( x-\frac{1}{21} \right )=0\\ 21-x=0\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;x-\frac{1}{21}=0\\ 21x=1\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;x=\frac{1}{21}\\ x=\frac{1}{21}

Hence \frac{1}{21} are the roots of the equation 21x^{2}-2x+\frac{1}{21}=0

View Full Answer(1)
Posted by

infoexpert24

Find the roots of the quadratic equations by using the quadratic formula in each of the following:

(i)2x^{2}-3x-5=0

(ii)5x^{2}+13x+8=0       

(iii)-3x^{2}+5x+12=0

(iv)-x^{2}+7x-10=0

(v)x^{2}+2\sqrt{2}x-6=0

(vi)x^{2}+3\sqrt{5}x+10=0

(vii)\frac{1}{2}x^{2}-\sqrt{11}x+1=0

(i) \frac{5}{2},-1

2x^{2}-3x-5=0

Compare with ax^{2}+bx+c=0 where a \neq 0

Here    a=2, b=-3, c=-5
 \\x=\frac{-b \pm \sqrt{b^{2}-4ac}}{2a}\\ x=\frac{-(-3)\pm \sqrt{(-3)^{2}-4(2)(-5)}}{2 \times 2}\\ x=\frac{3 \pm \sqrt{9+40}}{4}\\ x=\frac{3 \pm 7}{4}\\ x=\frac{3+7}{4}=\frac{10}{4}=\frac{5}{2 }\;\; \; \;\;\; x=\frac{3-7}{4} =\frac{-4}{4} =-1

 x=\frac{5}{2},-1

 \left (\frac{5}{2},-1 \right )  are the roots of the equation 2x^{2}-3x-5=0

 

(ii) -1,\frac{-8}{5}

 5x^{2}+13x+8=0

 Compare with ax^{2}+bx+c=0 where a \neq 0

 Here    a=5, b=13, c=8
 \\x=\frac{-b \pm \sqrt{b^{2}-4ac}}{2a}\\ x=\frac{-13\pm \sqrt{(13)^{2}-4(5)(8)}}{2 \times 5}\\ x=\frac{-13 \pm \sqrt{169-160}}{10}\\ x=\frac{-13 \pm 3}{10}\\ x=\frac{-13+3}{10}=\frac{-10}{10}=-1\;\; \; \;\;\; x=\frac{-13-3}{10} =\frac{-16}{10} =\frac{-8}{5}

                   x=-1,\frac{-8}{5}

 \left (-1,\frac{-8}{5} \right )  are the roots of the equation 5x^{2}+13x+8=0

(iii) \frac{-4}{3},3

-3x^{2}+5x+12=0

Compare with ax^{2}+bx+c=0 where a \neq 0

Here    a=-3, b=5, c=12

 \\x=\frac{-b \pm \sqrt{b^{2}-4ac}}{2a}\\ x=\frac{-5\pm \sqrt{(5)^{2}-4(-3)(12)}}{2 \times (-3)}\\ x=\frac{-5 \pm \sqrt{25+144}}{-6}\\ x=\frac{-5 \pm 13}{-6}\\ x=\frac{-5+13}{-6}=\frac{8}{-6}=\frac{-4}{3 }\;\; \; \;\;\; x=\frac{-5-13}{-6} =\frac{-18}{-6} =3

 x=\frac{-4}{3},3

 \left (\frac{-4}{3},3 \right )  \text{are the roots of the equation} -3x^{2}+5x+12=0

(iv) 5,2

 -x^{2}+7x-10=0

Compare with ax^{2}+bx+c=0 where a \neq 0

Here    a=-1, b=7, c=-10

 \\x=\frac{-b \pm \sqrt{b^{2}-4ac}}{2a}\\ x=\frac{-7\pm \sqrt{49-4(-1)(-10)}}{2 \times (-1)}\\ x=\frac{-7 \pm \sqrt{9}}{-2}\\ x=\frac{-7 \pm 3}{-2}\\ x=\frac{-7+3}{-2}=\frac{-4}{-2}=2\;\; \; \;\;\; x=\frac{-7-3}{-2} =\frac{-10}{-2} =5

 x=5,2

 (5,2)  are the roots of the equation -x^{2}+7x-10=0

(v) \sqrt{2},-3\sqrt{2}

x^{2}+2\sqrt{2}x-6=0

Compare with ax^{2}+bx+c=0 where a \neq 0           

Here    a=1, b=2\sqrt{2}, c=-6

 \\x=\frac{-b \pm \sqrt{b^{2}-4ac}}{2a}\\ x=\frac{-2\sqrt{2}\pm \sqrt{(2\sqrt{2})^{2}-4(1)(-6)}}{2 \times 1}\\ x=\frac{-2\sqrt{2} \pm \sqrt{8+24}}{2}\\ x=\frac{2\sqrt{2} \pm 4\sqrt{2}}{2}\\ x=\frac{2\left (\sqrt{2} \pm 2 \sqrt{2} \right )}{2}\\ x=-\sqrt{2}\pm2\sqrt{2}\\ x=-\sqrt{2}+2\sqrt{2}=\sqrt{2}\;\; \; \;\;\; x=-\sqrt{2}-2\sqrt{2}=-3\sqrt{2}

                   x=\sqrt{2},-3\sqrt{2}

            \sqrt{2},-3\sqrt{2}  are the roots of the equation x^{2}+2\sqrt{2}x-6=0

(vi) 2\sqrt{5},\sqrt{5}

x^{2}+3\sqrt{5}x+10=0

Compare with ax^{2}+bx+c=0 where a \neq 0           

a=1, b=3\sqrt{5}, c=10

 \\x=\frac{-b \pm \sqrt{b^{2}-4ac}}{2a}\\ x=\frac{3\sqrt{5}\pm \sqrt{(3\sqrt{5})^{2}-4(1)(10)}}{2 \times 1}\\ x=\frac{3\sqrt{5} \pm \sqrt{45-40}}{2}\\ x=\frac{3\sqrt{5} \pm \sqrt{5}}{2}\\ x=\frac{3\sqrt{5} + \sqrt{5}}{2}=\frac{4\sqrt{5}}{2}=2\sqrt{5}\;\; \; \;\;\; x=\frac{3\sqrt{5} - \sqrt{5}}{2}=\frac{2\sqrt{5}}{2}=\sqrt{5}

 x=2\sqrt{5},\sqrt{5}

 2\sqrt{5},\sqrt{5}  are the roots of the equation x^{2}+3\sqrt{5}x+10=0

(vii) \sqrt{11}+3,\sqrt{11}-3

 \frac{1}{2}x^{2}-\sqrt{11}x+1=0

Compare with ax^{2}+bx+c=0 where a \neq 0           

 Here a=\frac{1}{2},b=-\sqrt{11},c=1

 \\x=\frac{-b \pm \sqrt{b^{2}-4ac}}{2a}\\ x=\frac{\sqrt{11}\pm \sqrt{(-\sqrt{11})^{2}-4\left ( \frac{1}{2} \right )(1)}}{2 \times \frac{1}{2}}\\ x=\frac{\sqrt{11}\pm\sqrt{11-2}}{1}\\ x=\sqrt{11}\pm 3\\ x=\sqrt{11}+ 3\;\;\;\;\;\;\;x=\sqrt{11}- 3

 x=\left (\sqrt{11}+ 3 \right ),\left (\sqrt{11}- 3 \right )

hence \left (\sqrt{11}+ 3 \right ),\left (\sqrt{11}- 3 \right ) are the root of the equation \frac{1}{2}x^{2}-\sqrt{11}x+1=0

View Full Answer(1)
Posted by

infoexpert24

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads

Let y varies directly as x. If y = 12 when x = 4, then write a linear equation. What is the value of y when x = 5?

Answer:

y = 3x, y = 15 when x = 5.

Solution:

It is given that y varies directly as x

y\propto x

y = kx (Here k is constant)

For finding k, we can use the given condition y = 12 when x = 4

12 = k(4)

\frac{12}{4}=k

k = 3

Hence the equation is y = 3x

When x = 5 then the value of y is:

y = 3(5)

y = 15

Hence y = 15 when x = 5.

View Full Answer(1)
Posted by

infoexpert21

For what value of c, the linear equation 2x + cy = 8 has equal values of x and y for its solution.

Answer:

c=\frac{8-2y}{y}(y\neq 0)

Solution:

The given linear equation is

2x + cy = 8 … (i)

and it is also given that the value of x and y is equal

i.e., x = y

Putting x = y in the equation (i) we get

2y + cy = 8

cy = 8– 2y

c=\frac{8-2y}{y}(y\neq 0)

Hence the correct answer is c=\frac{8-2y}{y}(y\neq 0)

View Full Answer(1)
Posted by

infoexpert21

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE

Find the solution of the linear equation x + 2y = 8 which represents a point on x-axis.

 

Find the solution of the linear equation x + 2y = 8 which represents a point on y-axis.

Answer:

(8, 0)

Solution:

The given equation is

x + 2y = 8

at x-axis, we have y = 0

Now put the value of y = 0 in the given equation

x + 2(0) = 8

x = 8

So the required point is (8, 0)

 

 

Answer:

(0, 4)

Solution:

The given equation is

x + 2y = 8

At y-axis, we have x = 0

Now put the value of x = 0 in the given equation

0 + 2y = 8

y=\frac{8}{2}=4

y = 4

So the required point is (0, 4)

View Full Answer(1)
Posted by

infoexpert21

How many solution(s) of the equation 2x + 1 = x – 3 are there on the number line?

 

 

How many solution(s) of the equation 2x + 1 = x – 3 are there on the Cartesian plane?

Answer:

Only one solution

Solution:

The given equation is

2x + 1 = x – 3

2x – x = – 3 – 1

x = –4

Representation on number line:

On number line, there is only one solution

 

 

 

Answer:

Infinite solutions

Solution:

The given equation is

2x + 1 = x – 3

2x – x = – 3 – 1

x = –4

Cartesian plane representation:

There are infinite many points on line x = –4 in Cartesian plane so there are infinite solutions.

View Full Answer(1)
Posted by

infoexpert21

NEET 2024 Most scoring concepts

    Just Study 32% of the NEET syllabus and Score up to 100% marks


If the point (3, 4) lies on the graph of 3y = ax + 7, then find the value of a.

Answer:

a=\frac{5}{3}

Solution:

The given linear equation is 3y = ax + 7 and the point is (3, 4)

If the point (3, 4) lies on the graph of equation 3y = ax + 7 then it will surely satisfy the equation

Put value of x = 3 and y = 4 in equation 3y = ax + 7

3(4) = a(3) + 7

12 = 3a + 7

12 – 7 = 3a

5 = 3a

\frac{5}{3}=a

View Full Answer(1)
Posted by

infoexpert21

Write the linear equation such that each point on its graph has an ordinate 3 times its abscissa.

It is given that the ordinate is 3 times its abscissa.

That is y = 3x … (i)

Such points are:

 

x 0 1 2
y 0 3 6

The points are (0, 0), (1, 3) and (2, 6)

Now plot the graph of equation (1)

Hence y = 3x is the required solution such that each point on its graph has ordinate 3 times its abscissa.

View Full Answer(1)
Posted by

infoexpert21

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads

Draw the graph of the linear equation whose solutions are represented by the points having the sum of the coordinates as 10 units.

It is given that sum of the ordinates is 10 units

x + y = 10 …(1)

We can find such points as:

x 1 2 3
y 9 8 7

The points are (1, 9), (2, 8) , (3, 7) and so on.

Now plotting the graph of the linear equation

View Full Answer(1)
Posted by

infoexpert21

Draw the graph of the equation represented by a straight line which is parallel to the x-axis and at a distance 3 units below it.

We know that the straight line which is parallel to the x-axis is on the y-intercept, i.e. there is no x-intercept on it.

Now let us plot a straight line on y-intercept at a distance 3 units below the x-axis

View Full Answer(1)
Posted by

infoexpert21

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE

filter_img