Get Answers to all your Questions

header-bg qa
Filter By

All Questions

4. Study the diagram. The line l is perpendicular to line m

(a) Is CE = EG?

(b) Does PE bisect CG?

(c) Identify any two line segments for which PE is the perpendicular bisector.

(d) Are these true?

(i) AC > FG

(ii) CD = GH

(iii) BC < EH.

 

(a) CE = 5 - 3 = 2 units

     EG = 7 - 5 = 2 units    

     Therefore CE = EG.

(b) CE = EG therefore PE bisects CG.

(c) PE is the perpendicular bisector for line segments DF and BH

(d) (i) AC = 3 - 1 = 2 units

         FG = 7 - 6 = 1 unit

         Therefore AC > FG

          True

    (ii) CD = 4 - 3 = 1 unit

         GH = 8 - 7 = 1 unit

          Therefore CD = GH

          True    

    (iii) BC = 3 - 2 = 1 unit

          EH = 8 - 5 = 3 units

           Therefore BC < EH

           True 

View Full Answer(1)
Posted by

Sayak

3. There are two set-squares in your box. What are the measures of the angles that are formed at their corners? Do they have any angle measure that is common?

The angles of the two set quares are

(i) 90o, 60o and 30o

(ii) 90o, 45o and 45o

Yes they have the common angle measure 90o

View Full Answer(1)
Posted by

Sayak

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads

2.  Let \overline {PQ} be the perpendicular to the line segment \overline {XY} . Let \overline {PQ} and \overline {XY} intersect in the point A. What is the measure of \angle PAY ?

PQ\perp XY

 PQ and XY intersect at A

PA\perp AY

Therefore \angle PAY=90^{o}

View Full Answer(1)
Posted by

Sayak

1.  Which of the following are models for perpendicular lines :

            (a) The adjacent edges of a table top.

            (b) The lines of a railway track.

            (c) The line segments forming the letter ‘L’.

            (d) The letter V.

 (a) The adjacent edges of a table top are models for perpendicular lines.

(b) The lines of a railway track are not models for perpendicular lines as they are parallel to each other.

(c) The line segments forming the letter ‘L’ are models for perpendicular lines.

(d) The line segments forming the letter ‘V’ are models for perpendicular lines.

View Full Answer(1)
Posted by

Sayak

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE

 Q18         If u, v and w are functions of x, then show that                                                                                                                  \frac{d}{dx} ( u,v,w) = \frac{du}{dx} v. w +u . \frac{dv }{dx } v. w+ u . \frac{dv}{dx } . w+u.v \frac{dw}{dx}
in two ways - first by repeated application of product rule, second by logarithmic differentiation.

It is given that u, v and w are the functions of x
Let y = u.v.w
Now, we differentiate using product rule w.r.t x
First, take  y = u.(vw)
Now,
\frac{dy}{dx}= \frac{du}{dx}.(v.w) + \frac{d(v.w)}{dx}.u                      -(i)
Now, again by the product rule 
\frac{d(v.w)}{dx}= \frac{dv}{dx}.w + \frac{dw}{dx}.v
Put this in equation (i)
we get,
\frac{dy}{dx}= \frac{du}{dx}.(v.w) + \frac{dv}{dx}.(u.w) + \frac{dw}{dx}.(u.v)
Hence, by product rule we proved it

Now, by taking the log 
Again take y = u.v.w
Now, take log on both sides 
\log y = \log u + \log v + \log w
Now, differentiate w.r.t. x
we get,
\frac{1}{y}.\frac{dy}{dx} = \frac{1}{u}.\frac{du}{dx}+\frac{1}{v}\frac{dv}{dx}+\frac{1}{w}.\frac{dw}{dx}\\ \frac{dy}{dx}= y. \left ( \frac{v.w.\frac{du}{dx}+u.w.\frac{dv}{dx}+u.v.\frac{dw}{dx}}{u.v.w} \right )\\ \frac{dy}{dx} = (u.v.w)\left ( \frac{v.w.\frac{du}{dx}+u.w.\frac{dv}{dx}+u.v.\frac{dw}{dx}}{u.v.w} \right )\\
\frac{dy}{dx}= \frac{du}{dx}.(v.w) + \frac{dv}{dx}.(u.w) + \frac{dw}{dx}.(u.v)
Hence, we proved it by taking the log

View Full Answer(1)
Posted by

Gautam harsolia

 Q17 (3)   Differentiate (x^2 - 5x + 8) (x^3 + 7x + 9) in three ways mentioned below:
              (iii)  by logarithmic differentiation.
                 Do they all give the same answer?

Given function is
y=(x^2 - 5x + 8) (x^3 + 7x + 9)
Now, take log on both the sides
\log y = \log (x^2-5x+8)+\log (x^3+7x+9)
Now, differentiate w.r.t. x
we get,
\frac{1}{y}.\frac{dy}{dx} = \frac{1}{x^2-5x+8}.(2x-5) + \frac{1}{x^3+7x+9}.(3x^2+7)\\ \frac{dy}{dx}= y.\left ( \frac{(2x-5)(x^3+7x+9)+(3x^2+7)(x^2-5x+8)}{(x^2-5x+8)(x^3+7x+9)} \right )\\ \frac{dy}{dx}=(x^2-5x+8)(x^3+7x+9).\left ( \frac{(2x-5)(x^3+7x+9)+(3x^2+7)(x^2-5x+8)}{(x^2-5x+8)(x^3+7x+9)} \right )\\ \frac{dy}{dx} = (2x-5)(x^3+7x+9)+(3x^2+7)(x^2-5x+8)\\ \frac{dy}{dx} = 5x^4-20x^3+45x^2-56x+11
Therefore, the answer is 5x^4-20x^3+45x^2-56x+11
And yes they all give the same answer

View Full Answer(1)
Posted by

Gautam harsolia

NEET 2024 Most scoring concepts

    Just Study 32% of the NEET syllabus and Score up to 100% marks


 Q17 (2)   Differentiate (x^2 - 5x + 8) (x^3 + 7x + 9) in three ways mentioned below:
                (ii) by expanding the product to obtain a single polynomial.

Given function is
f(x)=(x^2 - 5x + 8) (x^3 + 7x + 9)
Multiply both to  obtain a single higher degree polynomial
f(x) = x^2(x^3+7x+9)-5x(x^3+7x+9)+8(x^3+7x+9)
            = x^5+7x^3+9x^2-5x^4-35x^2-45x+8x^3+56x+72
            = x^5-5x^4+15x^3-26x^2+11x+72
Now, differentiate w.r.t. x
we get,
f^{'}(x)=5x^4-20x^3+45x^2-52x+11
Therefore, the answer is 5x^4-20x^3+45x^2-52x+11
 

View Full Answer(1)
Posted by

Gautam harsolia

 Q17 (1)   Differentiate (x^2 - 5x + 8) (x^3 + 7x + 9) in three ways mentioned below:
                (i) by using product rule

Given function  is 
f(x)=(x^2 - 5x + 8) (x^3 + 7x + 9)
Now, we need to differentiate using the product rule
f^{'}(x)=\frac{d((x^2 - 5x + 8))}{dx}. (x^3 + 7x + 9)+(x^2 - 5x + 8).\frac{d( (x^3 + 7x + 9))}{dx}\\
             = (2x-5).(x^3+7x+9)+(x^2-5x+8)(3x^2+7)\\ =2x^4+14x^2+18x-5x^3-35x-45+3x^4-15x^3+24x^2+7x^2-35x+56\\ = 5x^4 -20x^3+45x^2-52x+11
Therefore, the answer is 5x^4 -20x^3+45x^2-52x+11

View Full Answer(1)
Posted by

Gautam harsolia

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads

 Q16  Find the derivative of the function given by f (x) = (1 + x) (1 + x^2) (1 + x^4) (1 + x^8) and hence find 

           f ' (1)

Given function is
y = (1 + x) (1 + x^2) (1 + x^4) (1 + x^8)
Take log on both sides
\log y =\log (1 + x) + \log (1 + x^2) +\log (1 + x^4) +\log (1 + x^8)
NOW, differentiate w.r.t. x
\frac{1}{y}.\frac{dy}{dx} = \frac{1}{1+x}+ \frac{2x}{1+x^2}+ \frac{4x^3}{1+x^4}+ \frac{8x^7}{1+x^8}\\ \frac{dy}{dx}=y.\left ( \frac{1}{1+x}+ \frac{2x}{1+x^2}+ \frac{4x^3}{1+x^4}+ \frac{8x^7}{1+x^8} \right )\\ \frac{dy}{dx}= (1 + x) (1 + x^2) (1 + x^4) (1 + x^8).\left ( \frac{1}{1+x}+ \frac{2x}{1+x^2}+ \frac{4x^3}{1+x^4}+ \frac{8x^7}{1+x^8} \right )
Therefore, f^{'}(x)= (1 + x) (1 + x^2) (1 + x^4) (1 + x^8).\left ( \frac{1}{1+x}+ \frac{2x}{1+x^2}+ \frac{4x^3}{1+x^4}+ \frac{8x^7}{1+x^8} \right )
Now, the vale of  f^{'}(1)  is
f^{'}(1)= (1 + 1) (1 + 1^2) (1 + 1^4) (1 + 1^8).\left ( \frac{1}{1+1}+ \frac{2(1)}{1+1^2}+ \frac{4(1)^3}{1+1^4}+ \frac{8(1)^7}{1+1^8} \right )\\ f^{'}(1)=16.\frac{15}{2} = 120

View Full Answer(1)
Posted by

Gautam harsolia

 Q15  Find dy/dx of the functions given in Exercises 12 to 15.  xy = e ^{x-y}

 

Given function is
f(x)\Rightarrow xy = e ^{x-y}
Now, take  take log on both the sides
\log x+\ log y = (x-y)(1) \ \ \ \ \ \ \ \ \ \ \ \ (\because \log e = 1)\\ \log x+\ log y = (x-y)
Now, differentiate w.r.t  x
\frac{1}{x}+\frac{1}{y}\frac{dy}{dx}=1-\frac{dy}{dx}
By taking similar terms on same side
We get, 
(\frac{1}{y}+1)\frac{dy}{dx}=1-\frac{1}{x}\\ \frac{y+1}{y}.\frac{dy}{dx}= \frac{x-1}{x}\\ \frac{dy}{dx}= \frac{y}{x}.\frac{x-1}{y+1}
Therefore, the answer is  \frac{y}{x}.\frac{x-1}{y+1} 

View Full Answer(1)
Posted by

Gautam harsolia

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE

filter_img