Get Answers to all your Questions

header-bg qa
Filter By

All Questions

If S is a point on side PQ of a triangle PQR such that PS = QS = RS, then

(A)PR .QR = RS^{2}         (B)QS^{2} + RS^{2} = QR^{2}

(C) PR^{2} + QR^{2} = PQ^{2}    (D) PS^{2} + RS^{2} = PR^{2}

Answer : [C]

Given: In triangle PQR

PS = QS = RS

\Rightarrow PS = RS

\therefore \angle 1=\angle 2 ...(1)

(Q If a right angle triangle have equal length of base and height then their acute angles are also equal)

\text{Similarly} \angle 3=\angle 4 ...(2)

( Q corresponding angles of equal sides are equal)

\text{In }\Delta PQR

\angle P+\angle Q+\angle R=180^{o}             

\because sum of angles of a triangle is 180°

\angle 2+\angle 4+\angle 1+\angle 3=180^{o} ....(3)

Using equation (1) and (2) in (3) 

\angle 1+\angle 3+\angle 1+\angle 3=180

2\left ( \angle 1+\angle 3 \right )=180^{o}

\Rightarrow \angle R=90^{o}

\text{Here }\angle R=90^{o}\therefore \Delta PQR \text{is right angle triangle }

PR^{2} + QR^{2} = PQ^{2}

View Full Answer(1)
Posted by

infoexpert23

\text{If }\Delta ABC\sim \Delta QRP,\frac{ar(ABC)}{ar(PQR)}=\frac{9}{4},AB=18\; cm  and BC = 15 cm then PR is equal to ?

\text{(A)} 10\; cm

\text{(B)} 12\; cm

\text{(C)} \frac{20}{3}\; cm

\text{(D)} 8\; cm

Answer : [A]

\Delta ABC \sim \Delta QRP \; \text {and}\; AB = 18 \; cm, BC = 15 \; cm

\therefore \frac{AC}{PQ}=\frac{AB}{QR}=\frac{BC}{RP}

\frac{ar(ABC)}{ar\left ( PQR \right )}=\frac{BC^{2}}{RP^{2}}\; \; \; \; \; \; \; \; ....(1)

[Q If triangles are similar, their areas are proportional to the squares of the corresponding sides.]

\frac{ar(ABC)}{ar\left ( PQR \right )}=\frac{9}{4}

[Using equation (1)]

\Rightarrow \frac{BC^{2}}{RP^{2}}=\frac{9}{4}                         

\frac{(15)^{2}}{RP^{2}}=\frac{9}{4}

RP^{2}=\frac{225\times 4}{9}=100

RP=\sqrt{100}

RP=10\; cm

View Full Answer(1)
Posted by

infoexpert23

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads

\text{If in triangles ABC and DEF},,\frac{AB}{DE}=\frac{BC}{FD}, \text{then they will be similar when},

\text{(A)} \angle B=\angle E

\text{(B)} \angle A=\angle D

\text{(C)} \angle B=\angle D

\text{(D)} \angle A=\angle D

Answer : [C]

Given :

\frac{AB}{DE}=\frac{BC}{FD}

Here corresponding sides of given triangles ABC and DEF are equal in ratio, therefore, the triangles are similar

Also, we know that if triangles are similar then their corresponding angles are equal

\Rightarrow \angle A=\angle E

      \angle B=\angle D

      \angle C=\angle F

Hence option C is correct.

View Full Answer(1)
Posted by

infoexpert23

\text{It is given that} \Delta ABC\sim \Delta DFE,\angle A=30^{o},\angle C=50^{o},AB=5\; cm,AC=8\; cm and DF=7.5\; cm. \text{Then, the following is true:}

(A)DE=12\; cm,\angle E=50^{o}

(B) DE=12\; cm,\angle F=100^{o}

(C) EF=12\; cm,\angle D=100^{o}

(D) EF=12\; cm,\angle D=30^{o}

Answer: [A]

\Delta ABC \sim \Delta DEF

\angle A=30^{o},\angle C=50^{o}

AB=5\; cm,AC=8\; cm,DF=7.5\; cm

\Delta ABC \sim \Delta DEF

\therefore \angle A=\angle D=30^{o}

\angle C=\angle E=100^{o}

\frac{AB}{DF}=\frac{BC}{FE}=\frac{AC}{DE}\; \; \; \; \; \; \; \; ....(1)

In\Delta ABC

\angle A+\angle B+\angle C=180^{o}                  

30+\angle B+100^{o}=180^{o}

\angle B=180^{o}-100^{o}-30^{o}

\angle B=50^{o}

\Rightarrow \angle B=\angle E=50^{o}                       \left \{ \because \Delta ABC\sim \Delta DFE \right \}

Now equate first and the last term of equation (1) we get

\frac{AB}{DF}=\frac{AC}{DE}

\frac{5}{7.5}=\frac{8}{DE}

DE=\frac{8 \times 75}{50}=12\; cm

View Full Answer(1)
Posted by

infoexpert23

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE

\text{It is given that}  \Delta ABC\sim \Delta PQR, with \frac{BC}{QR}=\frac{1}{3}.\text{Then, } \frac{ar\left ( PRQ \right )}{ar\left ( BCA \right )} \text{is equal to }

(a) 9

(b) 3

(c) \frac{1}{3}

(d) \frac{1}{9}

Answer : [A]

Given : \Delta ABC\sim \Delta PQR

\frac{BC}{QR}=\frac{1}{3}

It is given that \Delta ABC\sim \Delta PQR

\therefore \frac{AB}{PQ}=\frac{BC}{QR}=\frac{AC}{PR}\; \; \; \; \; \; ...(1)       \therefore \frac{ar(PRQ)}{ar(BCA)}=\frac{PR^{2}}{AC^{2}}

[Q If triangles are similar their areas are proportional to the squares of the corresponding sides.]

\Rightarrow \frac{ar(PRQ)}{ar(BCA)}=\frac{QR^{2}}{BC^{2}}\; \; \; \; \; \; \; ...(2) \text{{using equation (1)}}

 \frac{QR}{BC}=\frac{3}{1} \; \; \; \; \; \; \; \; \; \left \{ \because \frac{BC}{QR}=\frac{1}{3} \right \}

\text{Put} \frac{QR}{BC}=\frac{3}{1} \text{in (2) we get}

\therefore \frac{ar(PRQ)}{ar(BCA)}=\frac{3^{2}}{1^{2}}=\frac{9}{1}=9

Hence option A is correct.

View Full Answer(1)
Posted by

infoexpert23

In triangles ABC \; \text {and} \; DEF, \angle B = \angle E, \angle F = \angle C \; \text {and}\; AB = 3 DE. Then, the two triangles are

(A) congruent but not similar  (B) similar but not congruent

(C) neither congruent nor similar      (D) congruent as well as similar  

Answer : [B]

In \Delta ABC and \Delta DEF

\angle B=\angle E\; \text {and}\; \angle F=\angle C\; \text {also}\; AB=3DE

In \Delta ABC and \Delta DEF

\angle B=\angle E                      (given)

\angle F=\angle C                       (given)

\angle A=\angle D                       (third angle)

Therefore \Delta ABC\sim \Delta DEF              (by AAA similarity)

Also, it is given that AB=3DE

\Rightarrow AB\neq DE

Hence \Delta ABC and \Delta DEF is not congruent because congruent figures have the same shape and same size.

Therefore the two triangles are similar but not congruent.

View Full Answer(1)
Posted by

infoexpert23

NEET 2024 Most scoring concepts

    Just Study 32% of the NEET syllabus and Score up to 100% marks


If in two triangles DEF and PQR, \angle D = \angle Q \; \text {and} \; \angle R = \angle E, then which of the following is not true?

(a) \frac{EF}{PR}=\frac{DF}{PQ}

(b) \frac{DE}{PQ}=\frac{EF}{RP}

(c) \frac{DE}{QR}=\frac{DF}{PQ}

(d) \frac{EF}{RP}=\frac{DE}{QR}

Answer : [B]

In \Delta DEF and \Delta PQR

\angle D=\angle Q and \angle R=\angle E

Now draw two triangles with the help of given conditions:-

Here \angle D=\angle Q and \angle E=\angle R  {Given}

\therefore \; \; \; \; \Delta DEF\sim \Delta QRP  {by AA similarity}

\Rightarrow \angle F=\angle P  {corresponding angles of similar triangles}

\therefore \frac{DF}{QP}=\frac{ED}{RQ}=\frac{FE}{PR}\; \; \; \; \; \; \; \; ....(1)

Here option (A) \frac{EF}{PR}=\frac{DF}{PQ}  is true because both the terms are derived from equation (1)

Here option (B) \frac{DE}{PQ}=\frac{EF}{RP} is not true because the first term is not derived from equation (1)

Here option (C) \frac{DE}{QR}=\frac{DF}{PQ}  is true because both the terms are derived from equation (1)

Here option D i.e. is also true because both terms are derived from equation (1)

Hence option (B) is not true.

View Full Answer(1)
Posted by

infoexpert23

In Fig., two line segments AC and BD intersect each other at the point P such that PA = 6 cm, PB = 3 cm, PC = 2.5 cm, PD = 5 cm, \angle APB=50^{o} and \angle CDP=30^{o}. Then, \angle PBA is equal to

(A) 50°            (B) 30°            (C) 60°            (D) 100°

Answer: [D]

In \Delta APB and \Delta CPD.

\frac{AP}{PD}=\frac{6}{5}

\frac{BP}{CP}=\frac{3}{2.5}=\frac{30}{25}=\frac{6}{5}

\angle APB=\angle CPD=50^{o} {vertically opposite angles}

\therefore \Delta APB \sim \Delta DPC  {By SAS similarity criterion}

\therefore \angle A=\angle D=30^{o} {corresponding angles of similar triangles}

In \Delta APB

\angle A+\angle B+\angle APB=180^{o} {Sum of interior angles of a triangle is 180°}

30^{o}+\angle B+50^{o}=180^{o}

\angle B=180^{o}-50^{o}-30^{o}

\angle B=100^{o}

\Rightarrow \angle PBA=100^{o}

Hence option D is correct.

View Full Answer(1)
Posted by

infoexpert23

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads

If in two triangles ABC and PQR, \frac{AB}{QR}=\frac{BC}{PR}=\frac{CA}{PQ}, then

(a) \Delta PQR\sim \Delta CAB

(b) \Delta PQR\sim \Delta ABC

(c) \Delta CBA\sim \Delta PQR

(d) \Delta BCA\sim \Delta PQR

 

Answer: [A]

In \Delta ABC and \Delta PQR

\frac{AB}{QR}=\frac{BC}{PR}=\frac{CA}{PQ}\; \; \; \; \; \; \; .......(1)

(A) If \Delta PQR \sim \Delta CAB

Here; \frac{CA}{PQ}=\frac{CB}{PR}=\frac{AB}{PQ}

It matches the equation (1) Hence option A is correct.

(B) If \Delta PQR \sim \Delta ABC

Here; \frac{AB}{PQ}=\frac{BC}{QR}=\frac{AC}{PR}

It does not match equation (1)

Therefore option (B) is not correct.

(c) \Delta CBA\sim \Delta PQR

Here; \frac{CB}{PQ}=\frac{BA}{QR}=\frac{CA}{PR}

It does not match equation (1) Hence option (C) is not correct

(D) \Delta BCA \sim \Delta PQR

Here; \frac{BC}{PQ}=\frac{CA}{QR}=\frac{BA}{PR}

It does not match the equation (1). Hence option (D) is not correct.

View Full Answer(1)
Posted by

infoexpert23

 If \Delta ABC \sim \Delta EDF and \Delta ABC is not similar to \Delta DEF, then which of the following is not true?

(A) BC . EF = A C. FD       (B) AB . EF = AC . DE

(C) BC . DE = AB . EF      (D) BC . DE = AB . FD

Answer : [C]

Given : \Delta ABC\sim \Delta EDF

\therefore \frac{AB}{ED}=\frac{BC}{DF}=\frac{AC}{EF}

Taking the first two terms we get

\therefore \frac{AB}{ED}=\frac{BC}{DF}

by cross multiply we get

AB.DF=BC.ED

Hence option D is correct

Now taking the last two terms we get

\frac{BC}{DF}=\frac{AC}{EF}\Rightarrow BC.EF=DF.AC {By cross multiplication}

Hence option (A) is also correct

Now taking first and last terms, we get

\frac{AB}{ED}=\frac{AC}{EF}\Rightarrow AB.EF=AC.ED {By cross multiplication}

Hence option (B) is also correct

By using congruence properties we conclude that only option C is not true.

View Full Answer(1)
Posted by

infoexpert23

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE

filter_img