Get Answers to all your Questions

header-bg qa
Filter By

All Questions

In fig. , l || m and line segments AB, CD and EF are concurrent at point P. Prove tha

t\frac{AE}{BF}=\frac{AC}{BD}=\frac{CE}{FD}.

Given: l || m and line segments AB, CD and EF are concurrent at point P

To prove:-

\frac{AE}{BF}=\frac{AC}{BD}=\frac{CE}{FD}

Proof :In \Delta APC \; and\; \Delta DPB

\angle APC=\angle DPB                         (vertically opposite angles)

\angle PAC=\angle PBD                        (alternate angles)

and we know that if two angles of one triangle are equal to the two angles of another triangle then the two triangles are similar by AA similarity criterion

\therefore \; \; \; \; \; \Delta APC\sim \Delta DPB

Then, \frac{AP}{BP}=\frac{AC}{BD}=\frac{PC}{PD}\; \; \; \; \; \; \; \; \; ....(1)

In \Delta APE\; and\; \Delta FPB

\angle APE=\angle BPF            (vertically opposite angle)   

\angle PAE=\angle PBF              (alternate angle)     

\therefore \; \; \; \; \Delta APE\sim \Delta FPB    (by AA similarity criterion)

Then \frac{AP}{PB}=\frac{AE}{BF}=\frac{PE}{PF}\; \; \; \; \; \; \; ...(2)

In \Delta PEC\; and\; \Delta PFD

\angle EPC=\angle FPD            (vertically opposite angle)   

\angle PCE=\angle PDF              (alternate angle)     

\therefore \; \; \; \; \Delta PEC\sim \Delta PFD    (by AA similarity criterion)

Then \frac{PE}{PF}=\frac{PC}{PD}=\frac{EC}{FD}\; \; \; \; \; \; \; ...(3)

From equation (1), (2) and (3) we get

\frac{AP}{BP}=\frac{AC}{BD}=\frac{AE}{BF}=\frac{PE}{PF}=\frac{EC}{FD}

\Rightarrow \frac{AE}{BF}=\frac{AC}{BD}=\frac{CE}{FD}

Hence proved.

View Full Answer(1)
Posted by

infoexpert23

In Fig., PA, QB, RC and SD are all perpendiculars to a line l, AB = 6 cm, BC = 9 cm, CD = 12 cm and SP = 36 cm. Find PQ, QR and RS.

 

Answer: \left [ PQ=8_{cm},QR=12\; cm,RS=16\; cm\right ]

Given :- PA, QB, RC and SD are all perpendiculars to a line l, AB = 6 cm, BC = 9 cm, CD = 12 cm and SP = 36 cm

We know that if a line is drawn parallel to one side of a triangle to intersect the other two sides in distinct points, then the other two sides are divided in the same ratio.

\therefore PA \parallel QB \parallel RC \parallel SD     (parallel lines)

Then according to basic proportionality theorem

PQ : QR : RS = AB : BC : CD = 6 : 9 : 12

         \text {Let}\\PQ = 6x\\ QR = 9x\\ RS = 12x

length of PS = 36        (given)

\therefore \; \; \; PQ + QR + RS = 36\; \; \; \Rightarrow \; \; \; 6x + 9x + 12x = 36 \; \; \; \; \; \Rightarrow \; \; \; \; \; 27x = 36

x=\frac{36}{27}=\frac{4}{3}

PQ=6x=6 \times\frac{4}{3}=8\; cm

QR=9x=\frac{9\times 4}{3}=12\; cm

RS=12x=\frac{12\times 4}{3}=16\; cm

View Full Answer(1)
Posted by

infoexpert23

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads

O is the point of intersection of the diagonals AC and BD of a trapezium ABCD with AB || DC. Through O, a line segment PQ is drawn parallel to AB meeting AD in P and BC in Q. Prove that PO = QO.

ABCD is a trapezium and O is the point of intersection of the diagonals AC and BD.

AB\parallel DC

Proof :- \text {In} \Delta ABD \; \text {and }\; \Delta POD

\angle D=\angle D               (Common angle)

\angle ABD=\angle POD            (corresponding angles)

\therefore \Delta ABD\sim \Delta POD       (by AA similarity criterion)

Then \frac{OP}{AB}=\frac{PD}{AD}\; \; \; \; \; \; \; \; \; \; ...(1)

\text {In} \Delta ABC \; \text {and }\; \Delta OQC

\angle C=\angle C               (Common angle)

\angle BAC=\angle QOC            (corresponding angles)

\therefore \Delta ABC\sim \Delta OQC       (by AA similarity criterion)

Then \frac{OQ}{AB}=\frac{QC}{BC}\; \; \; \; \; \; \; \; \; \; ...(2)

\text {In}\Delta ADC

OP\parallel DC

We know that if a line is drawn parallel to one side of a triangle to intersect the other two sides in distinct points, then the other two sides are divided in the same ratio.

\therefore \frac{AP}{PD}=\frac{OA}{OC}\; \; \; \; \; \; \; \; \; ...(3)

\text {Also In}\; \Delta ABC

OQ\parallel AB

\therefore \frac{BQ}{QC}=\frac{OA}{OC}\; \; \; \; \; \; \; \; \; ...(4)          (by basic proportionality theorem)

from equation (3) and (4)

\frac{AP}{PD}=\frac{BQ}{QC}

Add 1 on both sides we get

\frac{AP}{PD}+1=\frac{BQ+QC}{QC}

\frac{AP}{PD}=\frac{BC}{QC}

\Rightarrow \frac{PD}{AD}=\frac{QC}{BC}\; \; \; \; \; \; \; ...(5)

\frac{OP}{AB}=\frac{QC}{BC}                      (use equation (1))

\Rightarrow \frac{OP}{AB}=\frac{OQ}{AB}               (use equation (2))

\Rightarrow OP=OQ

Hence proved

View Full Answer(1)
Posted by

infoexpert23

In Fig., line segment DF intersect the side AC of a triangle ABC at the point E such that E is the mid-point of CA and \angle AEF=\angle AFE.Prove that \frac{BD}{CD}=\frac{BF}{CE}.

Given: Line segment DF intersect the side AC of a triangle ABC at the point E such that E is the mid-point of CA and \angle AEF=\angle AFE

To prove :-

\frac{BD}{CD}=\frac{BF}{CE}

Construction:- Take point G on AB such that CG\parallel DF

Proof:- E is mid-point of CA             (given)

\therefore \; \; \; \; \; \; CE = AE

In \Delta ACG, CG\parallel EF and E is mid-point of CA

Then according to mid-point theorem

            CE = GF \; \; \; \; \; \; \; ....(1)

In \Delta BCG \; and\; \Delta BDF \; \; CG || DF

According to basic proportionality theorem.

If a line is drawn parallel to one side of a triangle to intersect the other two sides in distinct points, then the other two sides are divided in the same ratio.

\therefore \frac{BC}{CD}=\frac{BG}{GF}

      \frac{BC}{CD}=\frac{BF-GF}{GF}

    \frac{BC}{CD}=\frac{BF}{GF}=-1

   \frac{BC}{CD}+1=\frac{BF}{GF}

\frac{BC}{CD}+1=\frac{BF}{CE}            (use equation (1))    

\frac{BC+CD}{CD}=\frac{BF}{CE}

\frac{BD}{CD}=\frac{BF}{CE}

Hence proved.   

 

 

View Full Answer(1)
Posted by

infoexpert23

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE

Prove that the area of the semicircle drawn on the hypotenuse of a right angled triangle is equal to the sum of the areas of the semicircles drawn on the other two sides of the triangle.

Let PQR is a right angle triangle which is right angle at point Q.

            PQ = b, QR = a

Three semicircles are drawn on the sides of \Delta PQR having diameters PQ, QR and PR respectively.

Let x_{1}, x_{2} and x_{3} are the areas of semicircles respectively.

To prove:- x_{3}=x_{1}+x_{2}

Proof: In \Delta PQR use Pythagoras theorem we get

PR^{2}=PQ^{2}+QR^{2}

PR^{2}=a^{2}+b^{2}

PR^{2}=\sqrt{a^{2}+b^{2}}

Now area of semi-circle drawn on side PR is

x_{3}=\frac{\pi }{2}\left ( \frac{PR}{2} \right )^{2}                      \left [ \therefore \text {area of semicircle=}\frac{\pi r^{2}}{2} \right ]

=\frac{\pi}{2}\left ( \frac{\sqrt{a^{2}+b^{2}}}{2} \right )^{2}                 \left ( \therefore PR=\sqrt{a^{2}+b^{2}} \right )

=\frac{\pi}{2}\times\frac{\left ( a^{2}+b^{2} \right )}{4}

x_{3}=\frac{\pi}{8}\left ( a^{2}+b^{2} \right )

area of semi-circle drawn a side QR is

x_{2}=\frac{\pi }{2}\left ( \frac{QR}{2} \right )^{2}

=\frac{\pi }{2}\left ( \frac{a}{2} \right )^{2}

=\frac{\pi}{2}\times \frac{a^{2}}{4}

x_{2}=\frac{\pi}{8}a^{2}\; \; \; \; \; \; \; ....(2)

area of semicircle drawn on side PQ is

x_{1}=\frac{\pi }{2}\left ( \frac{PQ}{2} \right )^{2}

x_{1}=\frac{\pi }{2}\left ( \frac{b^{2}}{4} \right )\Rightarrow \frac{\pi}{8}b^{2}\; \; \; \; \; \; \; \; ....(3)

add equation (2) and (3) we get

x_{2}+x_{1}=\frac{\pi }{8}a^{2}+\frac{\pi}{8}b^{2}

x_{2}+x_{1}=\frac{\pi }{8}\left ( a^{2}+b^{2} \right )=x_{3}

Hence x_{2}+x_{1}=x_{3}

Hence proved

View Full Answer(1)
Posted by

infoexpert23

Prove that the area of the equilateral triangle drawn on the hypotenuse of a right angled triangle is equal to the sum of the areas of the equilateral triangles drawn on the other two sides of the triangle.

Let PQR is a right angle triangle which is a right angle at point R.

PR = b, RQ = a

Three equilateral triangles are drawn on the sides of triangle PQR that is PRS, RTQ and PUQ

Let x_{1},x_{2} and x_{3} are the areas of equilateral triangles respectively

To prove:- x_{1}+x_{2}=x_{3}

Using Pythagoras theorem in \Delta PQR we get

PQ^{2}+RQ^{2}+RP^{2}

PQ^{2}=a^{2}+b^{2}

PQ=\sqrt{a^{2}+b^{2}}

The formula of area of an equilateral triangle is

=\frac{\sqrt{3}}{4}\left ( side \right )^{2}

\therefore              Area of equilateral \Delta RTQ

x_{1}=\frac{\sqrt{3}}{4}\left ( a^{2} \right )\; \; \; \; \; \; \; \; ....(1)

Area of equilateral \Delta RSP

x_{2}=\frac{\sqrt{3}}{4} b^{2} \; \; \; \; \; \; \; \; ....(2)

Area of equilateral \Delta PQU

x_{3}=\frac{\sqrt{3}}{4}\left ( \sqrt{a^{2}+b^{2}} \right )^{2}                    \left ( Q\; PQ=\sqrt{a^{2}+b^{2}} \right )  

x_{3}=\frac{\sqrt{3}}{4} \left ( a^{2}+b^{2} \right )

add equation (1) and (2) we get

x_{1}+x_{2}=\frac{\sqrt{3}}{4}a^{2}+\frac{\sqrt{3}}{4}b^{2}

x_{1}+x_{2}=\frac{\sqrt{3}}{4}\left ( a^{2}+b^{2} \right )=x_{3}

Hence x_{1}+x_{2}=x_{3}

Hence proved

View Full Answer(1)
Posted by

infoexpert23

NEET 2024 Most scoring concepts

    Just Study 32% of the NEET syllabus and Score up to 100% marks


In a quadrilateral ABCD, \angle A + \angle D = 90^{o}. Prove that AC^{2} + BD^{2} = AD^{2} + BC^{2}

Given : ABCD is a quadrilateral, \angle A+\angle D=90^{o}

To prove :- AC^{2} + BD^{2} = AD^{2} + BC^{2}

Proof : In \Delta ADE

\angle A+\angle D=90^{o} \; \; \; \; \; ....(1)  (given)

for find \angle E use sum of the angle of a triangle is equal to 180^0

\angle A+\angle D+\angle E=180^{o}

90+\angle E=180^{o}

\angle E=180^{o} -90^{o}

\angle E=90^{o}

In \Delta ADE use the Pythagoras theorem we get

AD^{2}=AE^{2}+DE^{2}\; \; \; \; \; \; \; \; ....(2)

In \Delta BEC use the Pythagoras theorem we get

BC^{2}=BE^{2}+EC^{2} ....(3)

Add equation (2) and (3) we get

AD^{2}+BC^{2}=AE^{2}+DE^{2}+BE^{2}+CE^{2} .....(4)

In \Delta ACE use the Pythagoras theorem we get

AC^{2}=AE^{2}+CE^{2}....(5)

In \Delta EBD use the Pythagoras theorem we get

BD^{2}=BE^{2}+DE^{2}\; \; \; \; \; \; \; \; \; \; \; \; ....(6)

Now add equation (5) and (6) we get

AC^{2} + BD^{2} = AE^{2} + CE^{2} + BE^{2} + DE^{2}....(7)

From equation (4) and (7) we get

AC^{2} + BD^{2} = AD^{2} + BC^{2}

Hence proved.

View Full Answer(1)
Posted by

infoexpert23

\text{In} \Delta PQR, PD \perp QR \text{such that D lies on QR} . \text{If} PQ = a, PR = b, QD = c \text{and} DR=d\text{, prove that }(a + b) (a - b) = (c + d) (c - d).

and

\text{Given:- PQR is a triangle and} PD\perp QR

 PQ = a, PR = b, QD = C, DR = d

To prove:-

(a + b) (a - b) = (c + d) (c - d)

\text{Proof :- In}  \Delta PQD \text{use Pythagoras theorem}

\\PQ^{2}=QD^{2}+PD^{2}

\\a^{2}=c^{2}+PD^{2}\\a^{2}-c^{2}=PD^{2} \; \; \; \; \; \; \; \; ....(1)

\text{In } \Delta PRD \text{use Pythagoras theorem }

\\PR^{2}=PD^{2}+DR^{2}\\b^{2}=PD^{2}+d^{2}\\b^{2}-d^{2}=PD^{2}\; \; \; \; \; \; \; ....(2)

equate equation (1) and (2) we get
            \\a^{2} - c^{2} = b^{2} - d^{2}\\a^{2}-b^{2}=c^{2}-d^{2}

           (a - b) (a + b) = (c - d) (c + d)         \left [ \because a^{2} - b^{2} = (a - b) (a + b) \right ]

Hence proved.

View Full Answer(1)
Posted by

infoexpert23

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads

In Fig., PQR is a right triangle right angled at Q and QS \perp PR . If PQ = 6 cm and PS = 4 cm, find QS, RS and QR.

 

Given: PQR is a triangle

            \angle Q = 90^{o} \; and\; QS \perp PR

            PQ = 6 cm, PS = 4 cm

In \Delta SQP \; and \; \Delta SRQ

\angle S=\angle S            (common angles and each angle is 90°)

\angle SPQ=\angle SQR                        (each equal to 90^{o}-\angle R)

\therefore \Delta SQP \sim \Delta SRQ                   ( by AA similarity criterion)

\Rightarrow \frac{SQ}{PS}=\frac{SR}{SQ}

By cross multiply we get

SQ^{2}=PS.SR \; \; \; \; \; \; \; ....(1)

In \Delta PSQ use Pythagoras theorem.

PQ^{2}=PS^{2}+QS^{2}

6^{2}=4^{2}+QS^{2}

36-16=QS^{2}

20=QS^{2}

QS=\sqrt{20}=2\sqrt{5}cm

Put QS=2\sqrt{5} in equation (1)

\left ( 2\sqrt{5} \right )^{2}=4 \times SR

\frac{20}{4}=SR

5cm=SR

In \Delta QSR use Pythagoras theorem

QR^{2}=QS^{2}+SR^{2}

QR^{2}=\left ( 2\sqrt{5} \right )^{2}+\left ( 5 \right )^{2}

QR^{2}=20+25

QR=\sqrt{45}=3\sqrt{5}cm

 

View Full Answer(1)
Posted by

infoexpert23

In Fig., ABC is a triangle right angled at B and BD \perp AC. If AD = 4 cm, and CD = 5 cm, find BD and AB.

 

Answer: \left [ 2\sqrt{5}\; cm\; and\; 6\; cm \right ]

Given :- \angle B=90^{o} and BD\perp AC

              AD = 4 cm and CD = 5 cm

      In \Delta ABD and \Delta BDC

      \angle ADB = \angle BDC               (each equal to 90o)

     \angle BAD = \angle DBC                 (each equal to 90o-C)

    \therefore \Delta ABD\sim \Delta BDC            (by AA similarity criterion)

\Rightarrow \frac{DB}{DA}=\frac{DC}{DB}

By cross multiply we get

DB^{2}=DA.DC

DB^{2}=4 \times 5

DB=\sqrt{20}=2\sqrt{5}cm

In \Delta BDC use Pythagoras theorem

BC^{2}=BD^{2}+CD^{2}

BC^{2}=\left ( 2\sqrt{5} \right )^{2}+\left ( 5 \right )^{2}

BC^{2}=20+25=45

BC=\sqrt{45}=3\sqrt{5}

We know that  \Delta DBA\sim \Delta DBC

\therefore \frac{DB}{DC}=\frac{BA}{BC}\Rightarrow \frac{2\sqrt{5}}{5}=\frac{BA}{3\sqrt{5}}

BA=\frac{2\sqrt{5}\times 3\sqrt{5}}{5}=\frac{6 \times 5}{5}=6\; cm

View Full Answer(1)
Posted by

infoexpert23

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE

filter_img