Get Answers to all your Questions

header-bg qa
Filter By

All Questions

If the points A (1, 2), O (0, 0) and C (a, b) are collinear, then

(A) a = b

(B) a = 2b

(C) 2a = b

(D) a = –b

If points A(1, 2), O(0, 0),C (a, b) are collinear then area of triangle

formed by these points must be zero.

\\A(1, 2)=A(x\textsubscript{1} ,y\textsubscript{1})\\ O(0, 0)=O(x\textsubscript{2} ,y\textsubscript{2})\\ C (a, b)=C(x\textsubscript{3} ,y\textsubscript{3})\\ $area of triangle$= \frac{1}{2} [x\textsubscript{1}(y\textsubscript{2} - y\textsubscript{3}) + x\textsubscript{2}(y\textsubscript{3} - y\textsubscript{1}) + x\textsubscript{3}(y\textsubscript{1} - y\textsubscript{2})]\\ \Rightarrow \frac{1}{2} [x\textsubscript{1}(y\textsubscript{2} - y\textsubscript{3}) + x\textsubscript{2}(y\textsubscript{3} - y\textsubscript{1}) + x\textsubscript{3}(y\textsubscript{1} - y\textsubscript{2})] = 0\\ \Rightarrow [x\textsubscript{1}(y\textsubscript{2} - y\textsubscript{3}) + x\textsubscript{2}(y\textsubscript{3} - y\textsubscript{1}) + x\textsubscript{3}(y\textsubscript{1} - y\textsubscript{2})] = 0\\ \Rightarrow [1(0 - b) + 0(b - 2) + a(2 - 0)] = 0\\ \Rightarrow [-b + 0 + 2a] = 0\\ \Rightarrow -b + 2a = 0\\ \Rightarrow 2a = b\\

Hence, option C is correct.

View Full Answer(1)
Posted by

infoexpert21

If the distance between the points (4, p) and (1, 0) is 5, then the value of p is

(A) 4 only

(B) ± 4

(C) – 4 only

(D) 0

Points are A(4, p) and B(1, 0)

Distance

 \ (AB)\ = 5 (given )\\

Here 

\\{{x}_{1}} =4\ \ {{x}_{2}} =1\\ {{y}_{1}} =p \: \: \: \: \: {{y}_{2}} =0\\

Using distance formula 

\\=\sqrt{{{({{x}_{2}}-{{x}_{1}})}^{2}}+{{({{y}_{2}}-{{y}_{1}})}^{2}}} \\ AB =\sqrt{{{({{x}_{2}}-{{x}_{1}})}^{2}}+{{({{y}_{2}}-{{y}_{1}})}^{2}}} \\ Squaring both sides\\ (1 - 4)\textsuperscript{2} + (0 - p)\textsuperscript{2} = (5)\textsuperscript{2}\\ (-3)\textsuperscript{2} + (p)\textsuperscript{2} = 25\\ 9 + p\textsuperscript{2} = 25\\ p\textsuperscript{2} = 25 - 9\\ p\textsuperscript{2} = 16\\ p = \pm 4\\

Hence, option B is correct.

View Full Answer(1)
Posted by

infoexpert21

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads

The area of a triangle with vertices (a, b + c), (b, c + a) and (c, a + b) is

(A) (a+b+c)2

(B) 0

(C)( a + b + c)

(D) abc

Vertices are (a, b + c), (b, c + a), (c, a + b)

Here A(x\textsubscript{1}, y\textsubscript{1}) = (a , b + c)\\

\\B\left( {{x}_{2}},{{y}_{2}} \right)= (b , c + a)\\ C\left( {{x}_{3}},{{y}_{3}} \right)= (c , a + b)\\

We know that 

$Area of triangle $= \frac{1}{2} [x\textsubscript{1}(y\textsubscript{2} - y\textsubscript{3}) + x\textsubscript{2}(y\textsubscript{3} - y\textsubscript{1}) + x\textsubscript{3}(y\textsubscript{1} - y\textsubscript{2})]\\
\\ = \frac{1}{2} [a(c + a - a - b) + b(a + b - b - c) + c(b + c - c -a)]\\ = \frac{1}{2} [a(c - b) + b(a - c) + c(b - a)]\\ = \frac{1}{2} [ac - ab + ab - bc + bc - ac] = 0\\

Hence, option B is correct.

View Full Answer(1)
Posted by

infoexpert21

A line intersects the y-axis and x-axis at the points P and Q, respectively. If(2, –5) is the mid-point of PQ, then the coordinates of P and Q are respectively

(A) (0, – 5) and (2, 0)

(B) (0, 10) and (– 4, 0)

(C) (0, 4) and (– 10, 0)

(D) (0, – 10) and (4, 0)

Point

 P=(0, y)\{ at\ y -axis x=0\}
\\\mathrm{Q}=(\mathrm{x}, 0) \quad\{ at \mathrm{x} axis \mathrm{y}=0\} \\\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)=(0, \mathrm{y}) \quad\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)=(\mathrm{x}, 0)

Mid-point =(2,-5)

\\\left[\left(\frac{\mathrm{x}_{1}+\mathrm{x}_{2}}{2}\right),\left(\frac{\mathrm{y}_{1}+\mathrm{y}_{2}}{2}\right)\right]=(2,-5)\\\left(\frac{0+x}{2}, \frac{y+0}{2}\right)=2,-5 \\\frac{x}{2}=2 \quad \frac{y}{2}=-5

\\ x=4 \: \: \: \: \: \: \: \: y=-10 \\ \text { Point } P(0,-10), \ and\ Q(4,0)

Hence, option D is correct.

View Full Answer(1)
Posted by

infoexpert21

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE

A circle drawn with origin as the Centre passes through(13/2, 0) . The point which does not lie in the interior of the circle is :

\\(A) \frac{-3}{4}, 1 \\(B) 2, \frac{7}{3} \\(C) 5, \frac{-1}{2} \\(D) \left(-6, \frac{5}{2}\right)

A) Distance of the point (-3/4, 1) from (0,0) is

=\sqrt{\left(\frac{-3}{4}-0\right)^{2}+(1-0)^{2}}=\sqrt{\frac{9}{16}+1}=\sqrt{\frac{25}{16}}=\frac{5}{4}=1.25 \mathrm{units}

The distance  1.25<6.5 .  so the point (-3/4, 1)  is lie
B) Distance point (2, 7/3) from (0,0) is

=\sqrt{\left(\frac{7}{3}-0\right)^{2}+(2-0)^{2}}=\sqrt{\frac{49}{9}+4}=\sqrt{\frac{85}{9}}=\frac{9.2195}{3}=3.0731<6.25

So the point is lie
C) Distance point (5,-1/2) from (0,0) is

\\=\sqrt{\left(-\frac{1}{2}-0\right)^{2}+(5-0)^{2}}=\sqrt{\frac{1}{4}+25}=\sqrt{\frac{101}{4}}=\frac{10.0498}{2}=5.0249<6.25

So the point is lie in the interior of the circle
D)
The circle passes through (13/2, 0) having a centre (0,0)

\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)=(13 / 2,0) \quad\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)=(0,0)

\text{Apply distance formula}=\sqrt{\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right)^{2}+\left(\mathrm{y}_{2}-\mathrm{y}_{1}\right)^{2}}

\text{Radius}=\sqrt{(6.5-0)^{2}+(0-0)^{2}}
\\=\sqrt{(6.5)^{2}}=6.5$ \\$=5^{2}+0.5^{2}-6.5^{2} \quad (Negative) \\\left(-6, \frac{5}{2}\right)=(-6)^{2}+(2.5)^{2}-6.5$ \\$=6^{2}+2.5^{2}-6.5 \quad(positive)

Hence, point D is the correct answers.

View Full Answer(1)
Posted by

infoexpert21

The coordinates of the point whichis equidistant from the three verticesof the ΔAOB as shown in the figure is

(A) (x, y)

(B) (y, x)

(C) \frac{x}{2},\frac{y}{2}

(D)\frac{y}{2},\frac{x}{2}

 

In the given figure, it is clear that DAOB is a right-angle triangle.

And in a right-angle triangle, the mid-point of the hypotenuse is equidistant from the three vertices. Thus, co-ordinates must be mid-point of AB

\\ A (0, 2y), B(2x, 0)\\ (x\textsubscript{1}, y\textsubscript{1}) = (0, 2y) ,(x\textsubscript{2}, y\textsubscript{2}) = (2x, 0)\\

Now find mid-point of AB using mid-point formula 

\left( \frac{{{x}_{1}}+{{x}_{2}}}{2},\frac{{{y}_{1}}+{{y}_{2}}}{2} \right) \\

\left( \frac{0+2x}{2},\frac{{2y}+{0}}{2} \right)= \left ( x,y \right ) \\

Hence, option A is correct.

View Full Answer(1)
Posted by

infoexpert21

NEET 2024 Most scoring concepts

    Just Study 32% of the NEET syllabus and Score up to 100% marks


The perpendicular bisector of the line segment joining the points A (1, 5) andB (4, 6) cuts the y-axis at

(A) (0, 13)

(B) (0, –13)

(C) (0, 12)

(D) (13, 0)

\\At y-axis, x = 0 \therefore point P is (0, y).\\ A (1, 5) and B (4, 6)\\ \therefore AP = BP\\

Squaring both sides we get

\\AP\textsuperscript{2} = BP\textsuperscript{2}\\ (x\textsubscript{1} - 0)\textsuperscript{2} + (y\textsubscript{1} + y)\textsuperscript{2} = (x\textsubscript{2}- 0)\textsuperscript{2} + (x\textsubscript{2} - y)\textsuperscript{2 }\\ \textsuperscript{ }(Because distance formula =\sqrt{{{({{x}_{2}}-{{x}_{1}})}^{2}}+{{({{y}_{2}}-{{y}_{1}})}^{2}}} )\\ (1 - 0)\textsuperscript{2} + (5 - y)\textsuperscript{2} = (4 - 0)\textsuperscript{2} + (6 - y)\textsuperscript{2}\\ (1)\textsuperscript{2} + (5)\textsuperscript{2} + (y)\textsuperscript{2} - 2 \times 5 \times y = (4)\textsuperscript{2} + (6)\textsuperscript{2} + (y)\textsuperscript{2} - 2 \times 6 \times y\\ \{ using (a - b)\textsuperscript{2} = a\textsuperscript{2} + b\textsuperscript{2} - 2ab \} \\ 1 + 25 + y\textsuperscript{2} - 10y = 16 + 36 + y\textsuperscript{2} - 12y\\ 26 - 10y + 12y = 52\\ 2y = 52 - 26\\ 2y = 26\\ y = 13\\

Hence, point P is (0, 13)

Therefore, option A is correct.

View Full Answer(1)
Posted by

infoexpert21

If P(a/3 , 4) is the mid-point of the line segment joining the points Q (– 6, 5) and R (– 2, 3), then the value of a is

(A) – 4

(B) – 12

(C) 12

(D) – 6

\\ \mathrm{Q}(-6,5) \quad \mathrm{R}(-2,3)\\\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right) \quad\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)

By using mid-point formula

\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)  
P=\left(\frac{-6-2}{2}, \frac{5+3}{2}\right)
\\ \left(\frac{a}{3}, 4\right)=\left(\frac{-8}{2}, \frac{8}{2}\right) \\\left(\frac{a}{3}, 4\right)=(-4,4)
Compare x co-ordinate
\\\frac{a}{3}=-4$ \\$a=-4 \times 3$ \\$a=-12

Hence, option B is correct.

View Full Answer(1)
Posted by

infoexpert21

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads

If the point P (2, 1) lies on the line segment joining points A (4, 2) and B (8, 4),then

 \\(A) \mathrm{AP}=\frac{1}{3} \mathrm{AB} \\(B) \mathrm{AP}=1 / 3 \mathrm{~PB} \\(C) \mathrm{PB}=\frac{1}{3} \mathrm{AB} \\(D) \mathrm{AP}=\frac{1}{2} \mathrm{AB}

 

Let P divide  A B  in ratio  k: 1 
\\\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)=(4,2) \quad\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)=(8,4)\\P=\left(\frac{k(8)+1(4)}{k+1}, \frac{k(4)+1(2)}{k+1}\right)
By using section formula
Here,

\mathrm{P}=(2,1)
(2,1)=\left(\frac{8 k+4}{k+1}, \frac{4 k+12}{k+1}\right)
Compare x co-ordinate
\\\frac{8 k+4}{k+1}=2 \\8 k+4=2 k+2 \\6 k=-2 \\k=\frac{-2}{6}=\frac{-1}{3} \\Here, k is negative. Hence P divides A B in ratio 1: 3 externally. \\\frac{\mathrm{AP}}{\mathrm{PB}}=\frac{1}{3}$ \\$\mathrm{AP}=\frac{1}{3} \mathrm{~PB}

View Full Answer(1)
Posted by

infoexpert21

The fourth vertex D of a parallelogram ABCD whose three vertices areA (–2, 3), B (6, 7) and C (8, 3) is

(A) (0, 1)

(B) (0, –1)

(C) (–1, 0)

(D) (- 2 , 0)

Let D(x, y)

A(–2, 3), B(6, 7), C(8, 3) (given)

We know that in parallelogram diagonals are equal

mid-point of AC = mid-point of BD

\\ \left(\frac{-2+8}{2}, \frac{3+3}{2}\right)=\left(\frac{6+x}{2}, \frac{7+y}{2}\right) \\ \left(\frac{6}{2}, \frac{6}{2}\right)=\left(\frac{6+x}{2}, \frac{7+y}{2}\right) \\ (3,3)=\left(\frac{6+x}{2}, \frac{7+y}{2}\right) \\ \frac{6+x}{2}=3 \quad \frac{7+y}{2}=3 \\ 6+x=6 \quad 7+y=6 \\ x=0 \quad y=-1 \\ \text { Hence, } D=(0,-1)

option B is correct.

View Full Answer(1)
Posted by

infoexpert21

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE

filter_img