Get Answers to all your Questions

header-bg qa
Filter By

All Questions

A is a point at a distance 13 cm from the centre O of a circle of radius 5 cm.AP and AQ are the tangents to the circle at P and Q. If a tangent BC is drawn at a point R lying on the minor arc PQ to intersect AP at B and AQ at C, find the perimeter of the \bigtriangleupABC.

Answer 24 cm
Solution
Let us make figure according to question

 

Given : OA = 13 cm, Radius = 5 cm
Here AP = AQ            (tangent from same point)
OP \perp PA, OQ \perp QA  (  AP, AQ are tangents)
In \bigtriangleupOPA using Pythagoras theorem
\left ( H \right )^{2}= \left ( B \right )^{2}+\left ( P \right )^{2}
\left ( QP \right )^{2}= \left ( OP \right )^{2}+\left ( PA \right )^{2}
\left ( 13 \right )^{2}= \left ( 5 \right )^{2}+\left ( PA \right )^{2}
\left ( PA \right )^{2}= 169-25
PA= \sqrt{144}= 12\, cm ........(i)
Perimeter of \bigtriangleupABC = AB + BC + CA
 = AB + BR + RC + CA
= AB + BD + CQ + CA
  [ BP and BR are tangents from point B and CP and CQ are tangents from point C]
= AP + AQ      [  AP = AB + BP, AQ = AC + CQ]
 = AP + AP      [  AP = AQ]
 = 2AP
= 2 × 12           [using (i)]
= 24 cm


 

View Full Answer(1)
Posted by

infoexpert27

If an isosceles triangle ABC, in which AB = AC = 6 cm, is inscribed in a circle of radius 9 cm, find the area of the triangle.

Answer 8\sqrt{2}\, cm^{2}
Solution
   According to question
       
In \bigtriangleup ABD and \bigtriangleup ACO
AB = AC        [Given]
BO = CO        [Radius]
AO = AO        [Common side]
\therefore \, \bigtriangleup ABO\cong \bigtriangleup ACO [By SSS congruence Criterion]
\angle Q_{1}= \angle Q_{2} [CPCT]
In \bigtriangleup ABD and \bigtriangleup ACD
AB = AC        [given]
\angle Q_{1}= \angle Q_{2}                            
AD = AD        [common side]
\therefore \bigtriangleup ABD\cong \bigtriangleup ACD    [By SAS congruence Criterion]
\angle ADB= \angle ADC  …..(i)   [CPCT]
\angle ADB= \angle ADC= 180^{\circ} …..(ii)
From (i) and (ii)
\angle ADB= 90^{\circ}
OA is a perpendicular which bisects chord BC
  Let AD = x, then OD = 9 – x     \left ( \because OA= 9\, cm \right )        
 Use Pythagoras in \bigtriangleupADC
\left ( AC \right )^{2}= \left ( AD \right )^{2}+\left ( DC \right )^{2}
\left ( 6 \right )^{2}= x^{2}+\left ( DC \right )^{2}
\left ( AC \right )^{2}= 36-x^{2} …..(iii)
In \bigtriangleupODC using Pythagoras theorem
\left ( OC \right )^{2}= \left ( OD \right )^{2}+\left ( DC \right )^{2}
\left ( DC \right )^{2}= 81-\left ( 9-x \right )^{2}
 …..(iv)
From (iii) and (iv)
36-x^{2}= 81-\left ( 9-x \right )^{2}
36-x^{2}- 81+\left ( 81+x^{2} -18x\right )= 0
\left [ \because \left ( a-b \right )^{2} +a^{2}+b^{2}-2ab\right ]
36-x^{2}-81+81+x^{2}-18x= 0
18x= 36
x= 2
i.e., AD = 2 cm, OD = 9 – 2 = 7 cm
Put value of x in (iii)
\left ( DC \right )^{2}= 36-4
\left ( DC \right )^{2}= 32
DC= 4\sqrt{2}\, cm
BC= BD+DC
BC= 2DC    \left [ \because BD= DC \right ]
BC= 8\sqrt{2}\, cm
Areao of \bigtriangleup ABC= \frac{1}{2}\times base\times height
= \frac{1}{2}\times \times 8\sqrt{2}\times 2= 8\sqrt{2}\, cm
 

 

 

View Full Answer(1)
Posted by

infoexpert27

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads

The tangent at a point C of a circle and a diameter AB when extended intersect at P. If \anglePCA =110^{\circ} , find \angleCBA [see Figure].

Solution
   Given : \angle PCA= 110^{\circ}
Here \angle PCA= 90^{\circ}
[\because  PC is tangent]
\angle PCA= \angle PCO+\angle OCA
110^{\circ}= 90^{\circ}+\angle OCA
\angle OCA= 20^{\circ}
Here OC = OA (Radius)
\therefore \: \angle OCA= \angle OAC= 20^{\circ}\cdots \left ( i \right ) [\because  Sides opposite to equal angles are equal]
We know that PC is tangent and angles in alternate segment are equal.
Hence \angle BCP= \angle CAB= 20^{\circ}
In \bigtriangleup OAC
\angle O+\angle C+\angle A= 180^{\circ} [Interior angles sum of triangle is 180°]
\angle O+20^{\circ}+20^{\circ}= 180^{\circ} [using (i)]
\angle O= 180^{\circ}-40^{\circ}= 140^{\circ}  …..(ii)
Here \angle COB+\angle COA= 180^{\circ} 

\angle COB= 180^{\circ}-140^{\circ}( using (ii))
\angle COB= 40^{\circ} …..(iii)
In \bigtriangleup COB
\angle C+\angle O+\angle B= 180^{\circ} [using (iii)]
90^{\circ}-20^{\circ}+40^{\circ}+\angle B= 180^{\circ}
\angle B= 180^{\circ}-110^{\circ}= 70^{\circ}
Hence \angle CBA= 70^{\circ}

View Full Answer(1)
Posted by

infoexpert27

In Figure. O is the centre of a circle of radius 5 cm, T is a point such that OT = 13 cm and OT intersects the circle at E. If AB is the tangent to the circle at E, find the length of AB.

Answer \frac{20}{3}\, cm
Solution
  Given: Radius = 5 cm, OT = 13 cm
OP\perp PT         [  PT is tangent]
Using Pythagoras theorem \bigtriangleupOPT
H^{2}+B^{2}+P^{2}
\left ( OT \right )^{2}= \left ( OP \right )^{2}+\left ( PT \right )^{2}
\left ( 13 \right )^{2}= \left ( 5 \right )^{2}+\left ( PT \right )^{2}
\left ( PT \right )^{2}= 169-25
PT= {\sqrt{144}}= 12\, cm

PT and QT are tangents from same point
  \therefore PT = QT = 12 cm
AT = PT – PA 
AT = 12 – PA        ..…(i)
Similarly BT = 12 – QB          ..…(ii)
Since PA, PF and BF, BQ are tangents from point A and B respectively.
Hence, PA = AE              ..…(iii)
BQ = BE     ..…(iv)
AB is tangent at point E
  Hence OE \perp AB
\angle AET= 180^{\circ}-\angle AEO   \left ( \because \, \angle AEO= 90^{\circ} \right )
\angle AET= 180^{\circ}-90^{\circ}
\angle AET= 90^{\circ}
ET = OT – OF
ET = 13 – 5
ET = 8 cm
In \bigtriangleupAET, using Pythagoras theorem
\left ( H \right )^{2}= \left ( B \right )^{2}+\left ( P \right )^{2}
\left ( AT \right )^{2}= \left ( AE \right )^{2}+\left ( ET \right )^{2}
\left ( 12-PA \right )^{2}= \left ( PA \right )^{2}+\left ( 8 \right )^{2}  [using (i) and (ii)]
144+\left ( PA \right )^{2}-24\left ( PA \right )-\left ( PA \right )^{2}-64= 0
\left [ \because \left ( a-b \right )^{2}= a^{2}+b^{2}-2ab \right ]
80-42\left ( PA \right )= 0
24\left ( PA \right )= 80
\left ( PA \right )= \frac{80}{24}= \frac{10}{3}\, cm
\therefore \; AE= \frac{10}{3}\, cm\, \left [ using\left ( iii \right ) \right ]
Similiraly BE= \frac{10}{3}\, cm
AB= AE+BE= \frac{10}{3}+\frac{10}{3}= \frac{20}{3}\, cm

 

 

 

                        

View Full Answer(1)
Posted by

infoexpert27

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE

In Figure, the common tangent, AB and CD to two circles with centres O and O' intersect at E. Prove that the points O, E, O' are collinear.

Solution
Construction : Join AO and OS
  {O}'D and{O}'B
      
In \bigtriangleup E{O}'B and \bigtriangleup E{O}'D
{O}'D= {O}'B   [Radius are equal]
{O}'E= {O}'E  [Common side]
ED = EB           [Tangent drawn from an external point to the line circle  are equal to length]
AE{O}'B\cong E{O}'D  [By SSS congruence criterion]
\Rightarrow \; \angle {O}'ED= \angle {O}'EB\, \cdots \left ( i \right )
i.e.,      {O}'E  is bisector of\angle BED 
Similarly OE is bisector of \angle AEC 
In quadrilateral DEB{O}'
\angle {O}'DE= \angle {O}'BE= 90^{\circ}
\Rightarrow \, \angle {O}'DE= \angle {O}'BE= 180^{\circ}
\therefore \angle DEB+\angle D {O}'B= 180^{\circ}\, \cdots \left ( ii \right ) [\mathbb{Q}DEB{O}' is cyclic quadrilateral]
\angle AED+\angle DEB= 180^{\circ} [\mathbb{Q}  AB is a straight line]
\angle AED+180^{\circ}-\angle D{O}'B= 180^{\circ} [From equation (ii)]
\angle AED-\angle D{O}'B= 0
\angle AED-\angle D{O}'B\: \: \cdots \left ( iii \right )
Similarly \angle AED= \angle ADC\: \:\cdots \left ( iv \right )     
 From equation (ii) \angle DEB= 180^{\circ}-\angle D{O}'B
 Dividing both side by 2
\frac{\angle DEB}{2}= \frac{180^{\circ}-\angle D{O}'B}{2}
\angle DE{O}'= 90^{\circ}-\frac{1}{2}\angle D{O}'B\: \: \cdots \left ( v \right )
\left [ \because \, \frac{\angle DEB}{2}= \angle DE{O}' \right ]
Similarly \angle AEC= 180^{\circ}-\angle AOC
Dividing both side by 2
\frac{1}{2}\angle AEC= 90^{\circ}-\frac{\angle AOC}{2}
\angle AEO= 90^{\circ}-\frac{1}{2}\angle AOC\; \cdots \left ( vi \right )
\left [ \because \frac{1}{2}\angle AEC= \angle AEO \right ]
Now \angle AEO+\angle AED+\angle DE{O}'
= 90-\frac{1}{2}\angle AOC+\angle AED+90^{\circ}-\frac{1}{2}\angle D{O}'B
= \angle AED+180^{\circ}-\frac{1}{2}\left ( \angle D{O}'B+\angle AOC \right )
= \angle AED+180^{\circ}-\frac{1}{2} \left [ \angle AED+\angle AED \right ] [from equation (iii) and (iv)]
= \angle AED+180^{\circ}-\frac{1}{2} \left [ 2\angle AED \right ]
\angle AED+180^{\circ}-\angle AED
= 180^{\circ}
\therefore \: \angle AED+\angle DE{O}'+\angle AEO= 180^{\circ}
So,OEO’ is straight line
\therefore O, E and {O}'  are collinear.
Hence Proved

 

 

 


 

 

           

 

 

 

View Full Answer(1)
Posted by

infoexpert27

Prove that the tangent drawn at the mid-point of an arc of a circle is parallelto the chord joining the end points of the arc.

Solution
           

Let mid-point of arc is C and DCE be the tangent to the circle.
  Construction: Join AB, AC and BC.
Proof: In \bigtriangleupABC
AC = BC
   \Rightarrow \, \angle CAB= \angle CBA\: \cdots \left ( i \right )                   
[  sides opposite to equal angles are equal]
Here DCF is a tangent line
\therefore \; \; \angle ACD= \angle CBA [  angle in alternate segments are equal]
   \Rightarrow \; \angle ACD= \angle CAB …..(ii)         [From equation (i)]
But Here \angle ACD  and \angle CAB  are alternate angels.
\therefore equation (ii) holds only when AB||DCE.

Hence the tangent drawn at the mid-point of an arc of a circle is parallel to the chord joining the end points of the arc.

Hence Proved.

 

View Full Answer(1)
Posted by

infoexpert27

NEET 2024 Most scoring concepts

    Just Study 32% of the NEET syllabus and Score up to 100% marks


AB is a diameter and AC is a chord of a circle with centre O such that \angleBAC = 30^{\circ}. The tangent at C intersects extended AB at a point D. Prove that BC = BD. 

Solution
           

Given AB is a diameter and AC is a chord of circle with center O.
  \angle BAC= 30^{\circ} 
To Prove : BC = BD
Construction : Join B and C
Proof :\angle BCD= \angle CAB[Angle is alternate segment]
\angle BCD= 30^{\circ}\: \left [ Given \right ]  
\angle BCD= 30^{\circ}\cdots \left ( i \right )
\angle ACB= 90^{\circ} [Angle in semi circle formed is 90°]
In \bigtriangleupABC
\angle CAB+\angle ABC+\angle BCA= 180^{\circ}   [Sum of interior angles of a triangle is 180°]
30^{\circ}+\angle ABC+90^{\circ}= 180^{\circ}
\angle ABC= 180^{\circ}-90^{\circ}-30^{\circ}
\angle ABC= 60^{\circ}
Also , \angle ABC+\angle CBD= 180^{\circ} [Linear pair]
\angle CBD= 180^{\circ}-60^{\circ}
\angle CBD= 120^{\circ}
\angle ABC= 60^{\circ}
In \bigtriangleup CBD
\angle CBD+\angle BDC+\angle DCB= 180^{\circ}
\angle BDC= 30^{\circ}\cdots \left ( ii \right )
From equation (i) and (ii)
\angle BCD= \angle BDC
\Rightarrow BC= BD[\because  Sides opposite to equal angles are equal]
Hence Proved
 

View Full Answer(1)
Posted by

infoexpert27

In Figure, tangents PQ and PR are drawn to a circle such that \angleRPQ = 30^{\circ}. A chord RS is drawn parallel to the tangent PQ. Find the \angleRQS.

Solution
In the given figure PQ and PR are two tangents drawn from an external point P. 
\therefore PQ = PR      [\mathbb{Q} lengths of tangents drawn from on external point to a circle are equal]
\Rightarrow \angle PQR=\angle QRP   [  angels opposite to equal sides are equal]
  In \bigtriangleupPQR
\angle PQR+\angle QRP+\angle RPQ= 180^{\circ}
                              [  sum of angels of a triangle is 180°]
\angle PQR+\angle PQR+\angle RPQ= 180^{\circ}
\left [ \angle PQR= \angle QRP \right ]
2\angle PQR+30^{\circ}= 180^{\circ}
\angle PQR= \frac{180^{\circ}-30^{\circ}}{2}
\angle PQR= \frac{150^{\circ}}{2}
\angle PQR= 75^{\circ}

SR||OP (Given)

\therefore  \angle SRQ= \angle RQP= 75^{\circ} [Alternate interior angles]      

  Also     \angle PQR= \angle QRS= 75^{\circ}   [Alternate segment angles]    
In \bigtriangleupQRS
\angle Q+\angle R+\angle S= 180^{\circ}
\angle Q+75^{\circ}+75^{\circ}= 180^{\circ}
\angle Q= 180^{\circ}-75^{\circ}-75^{\circ}
\angle Q= 30^{\circ}
\therefore \angle RQS= 30^{\circ}

View Full Answer(1)
Posted by

infoexpert27

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads

In a right triangle ABC in which \angleB = 90^{\circ}, a circle is drawn with AB as diameter intersecting the hypotenuse AC and P. Prove that the tangent to the circle at P bisects BC.

Solution

Let O be the center of the given circle.
Suppose P meet BC at point R
Construction: Join point P and B
To Prove: BR = RC
Proof:\angle ABC= 90^{\circ}   [Given]
  In \bigtriangleupABC
\angle ABC+\angle BCA+\angle CAB= 180^{\circ} [  Sum of interior angle of a triangle is 180°]
90^{\circ}+\angle 2+\angle 1= 180^{\circ}
\angle 1+\angle 2= 180^{\circ}-90^{\circ}
\angle 1+\angle 2= 90^{\circ}
Also     \angle 4= \angle 1          [  tangent and chord made equal angles in alternate segment]
\Rightarrow \angle 4+\angle 2= 90^{\circ}\cdots \left ( i \right )
\angle APB= 90^{\circ}   [  angle in semi circle formed is 90°]
\angle APB+\angle BPC= 180^{\circ}
\angle BPC= 180^{\circ}-90^{\circ}
\angle BPC= 90^{\circ}
\angle 4+\angle 5= 90^{\circ}\cdots \left ( ii \right ) 
Equal equation (i) and (ii) we get
\angle 4+\angle 2= \angle 4+\angle 5
\angle 2= \angle 5
PR= RC \, \cdots \left ( iii \right )    [Side opposite to equal angles are equal]
Also,    PR = BR         …..(iv)   [  tangents drawn to a circle from external point are equal]

From equation (iii) and (iv)
BR = RC

Hence Proved

View Full Answer(1)
Posted by

infoexpert27

Two circles with centres O and O' of radii 3 cm and 4 cm, respectively intersect at two points P and Q such that OP and O'P are tangents to the two circles. Find the length of the common chord PQ.

Answer
4.8 cm
Solution 
              

Given : Radii of two circles are OP = 3 cm and {O}'  and intersection point of two circles are P and Q.  Here two tangents drawn at point P are OP and {O}'P
\therefore \: \angle P= 90^{\circ}
3^{2}-x^{2}= \left ( NP \right )^{2}
Also apply Pythagoras theorem in \bigtriangleup PN{O}'  we get
\left ( P{O}' \right )^{2}= \left ( PN \right )^{2}+\left (N {O}' \right )^{2}
\left (4 \right )^{2}= \left ( PN \right )^{2}+\left (5-x \right )^{2}
16= \left ( PN \right )^{2}+\left (5-x \right )^{2}
16- \left (5-x \right )^{2}= \left ( PN \right )^{2}\cdots \left ( ii \right )
Equate equation (i) and (ii) we get
9-x^{2}= 16-\left ( 5-x \right )^{2}
9-x^{2}-16+\left ( 25+x^{2}-10x \right )= 0
\left [ \because \left ( a-b \right )^{2}= a^{2}+b^{2}-2ab \right ]
-7-x^{2}+\left ( 25+x^{2}-10x \right )= 0
-7-x^{2}+25+x^{2}-10x= 0
18-10x= 0
18= 10x
\frac{18}{10}= x

x= 1\cdot 8
Put x = 1.8 in equation (i) we get  
9-\left ( 1\cdot 8 \right )^{2}= NP^{2}
9-3\cdot 24= NP^{2}
5\cdot 76= NP^{2}
NP= \sqrt{5\cdot 76}
NP= 2\cdot 4
P\mathbb{Q}= 2\times PN= 2\cdot 24= 4\cdot 8 cm  

View Full Answer(1)
Posted by

infoexpert27

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE

filter_img