Get Answers to all your Questions

header-bg qa
Filter By

All Questions

In a fluorescent lamp choke ( a small transformer) 100 V of reverse voltage is produced when the choke current changes uniformly from 0.25 A to 0 in a duration of 0.025 ms. The self-inductance of the choke (in mH) is estimated to be _____.
Option: 1 10
Option: 2  20
Option: 3 30
Option: 4 40
 

 

 

 

V = L\frac{\text d i}{\text d t}\Rightarrow 100 = L\frac{0.25}{0.025} \\ \Rightarrow L = 10 \ \text{mH}

View Full Answer(1)
Posted by

avinash.dongre

Magnetic field in a plane electromagnetic wave is given by Expression for corresponding electric field will be : Where c is speed of light.    
Option: 1
Option: 2 
Option: 3
Option: 4 
 

View Full Answer(1)
Posted by

vishal kumar

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads

Two reactions R1 and R2 have identical pre-exponential factors.  Activation energy of R1 exceeds that of R2 by 10 kJ mol−1.  If k1 and k2 are rate constants for reactions R1 and R2 respectively at 300 K, then ln(k2/k1) is equal to : (R=8.314 J mol−1K−1)  
Option: 1 6
Option: 2 4
Option: 3 8
Option: 4 12
 

K=Ae^{\frac{-Ea}{RT}}

\frac{K_{1}}{K_{2}}=e\left ( \frac{Ea_{1}-Ea_{2}}{RT} \right )

Taking log both the sides

ln\left ( \frac{K_{2}}{K_{1}} \right )=\frac{E_{a1}-E_{a2}}{RT}= \frac{10000}{8.314\times 300}=4

View Full Answer(1)
Posted by

vishal kumar

Four resistances of 15\Omega ,12\Omega,4\Omega\:\:and\:\:10\Omega respectively in cyclic order to form Wheatstone's network. The resistance that is to be connected in parallel with the resistance of 10\Omega to balance the network is ___________\Omega.
Option: 1 10
Option: 2 5
Option: 3 15
Option: 4 20
 

For balanced Wheatstone bridge \frac{R_1}{R_2}=\frac{R_3}{R_4} \ \ or \ \ \frac{R_1}{R_3}=\frac{R_2}{R_4}

R_2=12 \Omega \ \ and \ \ R_4=4 \Omega

As \frac{R_2}{R_4}=\frac{12}{4}=3

So using R_1=15 \Omega

We get R_3=R_{AD}=5 \Omega 

let we connected x-ohms in parallel to 10-ohm resistance

i.e R_3=5 \Omega=\frac{x*10}{x+10}

we get x=10 \Omega 

 

So the answer will be 10.

View Full Answer(1)
Posted by

vishal kumar

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE

At time t=0 magnetic field of 1000 Gauss is passing perpendicularly through the area defined by the closed loop shown in the figure. If the magnetic field reduces linearly to 500\: Gauss, in the next 5s, then induced EMF (in \mu V) in the loop is : 
Option: 1 56

Option: 3 48

Option: 5 36

Option: 7 28
 

 

 

 

 

 

Area of the given loop

\\A=Area\ of\ rectangle-Area\ of \ 2\ triangles\ with\ height\ 2cm \\ A=16\times4-2\times4=56cm^2

Magnitude of emf 

\\E=A\frac{dB}{dt}=56\times10^{-4}\times(\frac{(1000-500)\times10^{-4}}{5})\\ E=5600\times10^{-8}V=56\mu \ V

So the correct graph is given in option 1.

View Full Answer(1)
Posted by

vishal kumar

The length of a potentiometer wire is 1200cm and it carries a current of 60mA. For a cell of emf 5V and internal resistance of 20\Omega, the null point on it is found to be at 1000cm. The resistance of whole wire is (in \ \Omega):  
Option: 1 100
Option: 2 80
Option: 3 604
Option: 7 120

 

 

 

   

 

 

In the potentiometer, a battery of known emf  E is connected in the secondary circuit. A constant current I is flowing through AB from the driver circuit. The jockey is a slide on potentiometer wire AB to obtain null deflection in the galvanometer. Let  l be the length at which galvanometer shows null deflection.

Since the potential of wire AB (V) is proportional to the length AB(L). 

 Similarly E \ \ \alpha \ \ \ l

So we get 

\frac{V}{E}=\frac{L}{l}

V=E\frac{L}{l}

V=5\times\frac{1200}{1000}=6V

given current through potentiometer wire =60mA

V=iR

\\60\times10^{-3}R=6\\\Rightarrow R=100\Omega 

So the correct option is 4.

 

View Full Answer(1)
Posted by

vishal kumar

NEET 2024 Most scoring concepts

    Just Study 32% of the NEET syllabus and Score up to 100% marks


A proton with kinetic energy of 1MeV moves from south to north. It gets acceleration of 10^{12}m/s^2 by an applied magnetic field (west to east). The value of magnetic field ( in mT):  (Rest mass of a proton is 1.6\times 10^{-27}kg)
Option: 1 0.71
Option: 2 71
Option: 3 0.071
Option: 4 7.1
 

 

   \begin{array}{l}{\because \mathrm{K.E.}=1.6 \times 10^{-13}=\frac{1}{2} \times 1.6 \times 10^{-27} \mathrm{V}^{2}} \\ \\ {\mathrm{V}=\sqrt{2} \times 10^{7}} \\ \\ {\therefore \mathrm{Bqv}=\mathrm{ma}} \\ \\ {\mathrm{B}=\frac{1.6 \times 10^{-27} \times 10^{12}}{1.6 \times 10^{-19} \times \sqrt{2} \times 10^{7}}} \\ \\ {=0.71 \times 10^{-3} \mathrm{T}} \\ \\ {\text { so } 0.71 \mathrm{mT}}\end{array} 

So option (1) is correct

View Full Answer(1)
Posted by

vishal kumar

A loop ABCDEFA of straight edges has six corner points A(0,0,0), B(5,0,0),C(5,5,0), D(0,5,0), E(0,5,5) and F(0,0,5). The magnetic field in this region is \vec B=(3\hat{i}+4\hat{j})T.The quantity of flux through the loop ABCDEFA (in Wb) is:-    
Option: 1 175
Option: 2 60
Option: 3 25
Option: 4 170
 

 

 

Magnetic flux - - wherein

Magnetic flux-

The total number of magnetic lines of force passing normally through an area placed in a magnetic field is equal to
the magnetic flux linked with that area.

I.e for the below figure

Net magnetic flux through the surface is given by

\phi_B = \oint \vec{B}\cdot \vec{dA}= BA\cos \Theta

where 

\phi_B= Magnetic Flux

B = Magnetic field 

\Theta = The angle between area vector and magnetic field vector

 

 

  • Magnetic flux is a scalar quantity.
  • Unit of magnetic flux -

          It's S.I. unit is Weber (wb) or Tesla\times m^2 and its C.G.S. unit is maxwell(Mx).

      and 1 \ w b=1 \ T m^{2}  and 1 \ Mx = 10^{-8 } \ wb

  • The dimension of magnetic flux is ML^{2}T^{-2}A^{-1} 
  • if θ = 0 then \phi = BA and  Flux will be positive.
  • If  \theta =\frac{\pi }{2} then Flux will be zero (i.e \phi = 0)

            

 

 

 

 

 

 

\vec B=(3\hat{i}+4\hat{j})T

Total area vectot=area of ABCD+area of DEFA=5^2\hat{k}+5^2\hat{i}=25 (\hat{i}+\hat{k})

Total Magnetic flux=\vec{B}.\vec{A}=(3\hat{i}+4\hat{j}).(25 (\hat{i}+\hat{k}))=(75+100)wb=175 wb

 

So option 3 will be correct answer.

View Full Answer(1)
Posted by

Ritika Jonwal

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads

In a meter bridge experimental S is a standard resistance, R is resistance wire. It is found that balancing length is l=25 cm. If R is replaced by a wire of half length and half diameter that of R of same material, then the balancing distance {l}' (in cm) will now be _____.
Option: 1 40
Option: 2  50
Option: 3 20
Option: 4 30
 

 

 

 

\frac{X}{R}=\frac{75}{25}=3

R=\frac{P^{l}}{A}=\frac{4P^{l}}{\pi d^{2}}

{R}'=\frac{4\rho \left ( \frac{l}{2} \right )}{\pi \left ( \frac{d}{2} \right )^{2}}=2R

then, \frac{x}{{R}'}=\frac{X}{2R}=\frac{3}{2}

l=40.00\; cm

 

View Full Answer(1)
Posted by

avinash.dongre

Two identical capacitors A and B, charged to the same potential 5V are connected in two different circuits as shown below at time t=0. If the charge on capacitors A and B at time t=CR is Q_{A} and Q_{B} respectively , then (Here e is the base of natural logarithm)
Option: 1 Q_{A}=VC,\; Q_{B}=CV      
Option: 2  Q_{A}=\frac{CV}{2},\; Q_{B}=\frac{VC}{e}      
Option: 3   Q_{A}=\frac{VC}{e},\; Q_{B}=\frac{CV}{2}     
Option: 4  Q_{A}=VC,\; Q_{B}=\frac{VC}{e}      
 

 

 

Maximum charge on the capacitor=5CV

(a) is reverse biased and (b) is forward biased

(a)                                                           (b)

                 

So, q=q_{max}\left [ e^{-t/RC} \right ]

Q_{B}=\frac{CV}{e}

Hence the correct option is (4). 

View Full Answer(1)
Posted by

avinash.dongre

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE

filter_img