Get Answers to all your Questions

header-bg qa
Filter By

All Questions

find and correct the errors in the following mathematical statements

Q21)

\frac{7x +5}{5} = 7x

Our L.H.S. is \Rightarrow \frac{7x+5}{5} = \frac{7x}{5} + \frac{5}{5} = \frac{7x}{5} + 1 \neq   R.H.S.

Correct statement is  \frac{7x+5}{5} = \frac{7x}{5} + 1 = \frac{7x+5}{5}

View Full Answer(1)
Posted by

Gautam harsolia

find and correct the errors in the following mathematical statements

Q20)

\frac{4 x + 5 }{4x } = 5

Our L.H.S. is \Rightarrow \frac{4x+5}{4x} = \frac{4x}{4x} + \frac{5}{4x} = 1 + \frac{5}{4x} \neq    R.H.S.
 

Correct statement is \frac{4x+5}{4x} = 1 + \frac{5}{4x} = \frac{4x+5}{4x}

View Full Answer(1)
Posted by

Gautam harsolia

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads

find and correct the errors in the following mathematical statements

Q19) 

\frac{3}{4x +3}= \frac{1}{4x }

Our L.H.S. is  \Rightarrow \frac{3}{4x+3} = \frac{3}{4x+3} \neq   R.H.S.

Correct statement is \frac{3}{4x+3} = \frac{3}{4x+3}

View Full Answer(1)
Posted by

Gautam harsolia

find and correct the errors in the following mathematical statements.

Q18)

\frac{3 x }{3 x +2 } = 1/2

Our L.H.S.

 \Rightarrow \frac{3x}{3x+2}   

R.H.S. = 1/2

It can be clearly observed that L.H.S is not equal to R.H.S

So, the correct statement is,

 \frac{3x}{3x+2} = \frac{3x}{3x+2}

View Full Answer(1)
Posted by

Gautam harsolia

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE

Find and correct the errors in the following mathematical statements.

Q17)

\frac{3 x ^2 + 1 }{3 x ^2 } = 1+1 = 2

Our L.H.S.  is
 \Rightarrow \frac{3x^2+1}{3x^2}   
R.H.S. = 2
It is clear from the above statement that L.H.S. is not equal to R.H.S.
So, correct statement is 
\frac{3x^{2}+1}{3x^{2}} = 1 + \frac{1}{3x^{2}} = \frac{3x^{2}+1}{3x^{2}} 

View Full Answer(1)
Posted by

Gautam harsolia

Find and correct the errors in the following mathematical statements.

Q16)

\frac{3 x ^2}{3 x ^2 } = 0

Our L.H.S.  is 
 \Rightarrow \frac{3x^{2}}{3x^{2}}     
  R.H.S. = 0
It is clear from the above that L.H.S. is not equal to R.H.S.
So, correct statement  is 
  \frac{3x^{2}}{3x^{2}} = 1

View Full Answer(1)
Posted by

Gautam harsolia

NEET 2024 Most scoring concepts

    Just Study 32% of the NEET syllabus and Score up to 100% marks


 

Find and correct the errors in the following mathematical statements.

Q15)

(a - 4 ) ( a - 2 )= a ^2 - 8

Our L.H.S. is (a - 2) (a - 4)
                     = a^{2} - 4a - 2a + 8
                     = a^{2} - 6a+ 8  \neq  R.H.S.
Correct statement is  (a - 2) (a - 4)  =  a^{2} - 6a+ 8

View Full Answer(1)
Posted by

Gautam harsolia

Find and correct the errors in the following mathematical statements.

Q14)

( a + 4 ) ( a +2 ) = a ^ 2 + 8

Oue L.H.S. is  (a + 4)(a + 2)
                     =a^{2} + 2a + 4a + 8
                     = a^{2} + 6a + 8   \neq  R.H.S.
Correct statement is   (a + 4)(a + 2)  = a^{2} + 6a + 8

View Full Answer(1)
Posted by

Gautam harsolia

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads

Find and correct the errors in the following mathematical statements.

Q13)

( 2a +3b ) ( a-b) = 2 a ^2 - 3 b^2

Our L.H.S. is  (2a + 3b)(a -b)
                   = 2a^{2} -2ab + 3ab - 3b^{2}
                   = 2a^{2} +ab - 3b^{2}   \neq   R.H.S.
Correct statement is  (2a + 3b)(a -b) = 2a^{2} +ab - 3b^{2}

View Full Answer(1)
Posted by

Gautam harsolia

Find and correct the errors in the following mathematical statements

Q12)

( z+5 ) ^2 = z^2 + 25

Our L.H.S. is   (z+5)^{2}
                        =(z)^{2} + 2(z)(5) + (5)^{2}                                         using (a+b)^{2} = (a)^{2} + 2(a)(b) + (b)^{2}
                        = (z)^{2} + 10z + 25  \neq   R.H.S.
Correct statement  is 

 (z+5)^{2}  =    (z)^{2}  + 10z + 25

View Full Answer(1)
Posted by

Gautam harsolia

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE

filter_img