Get Answers to all your Questions

header-bg qa
Filter By

All Questions

A design is made on a rectangular tile of dimensions $50 \mathrm{~cm} \times 70 \mathrm{~cm}$ as shown in Figure. The design shows 8 triangles, each of the sides $26 \mathrm{~cm}, 17 \mathrm{~cm}$ and 25 cm. Find the total area of the design and the remaining area of the tile.

Solution.

We have the dimensions of the rectangle tile as $50 \mathrm{~cm} \times 70 \mathrm{~cm}$

We know that area of a rectangle $=$ length $\times$ breadth

Area of tile $=(70 \times 50) \mathrm{cm}^2=3500 \mathrm{~cm}^2$

Given sides of triangular design: $26 \mathrm{~cm}, 17 \mathrm{~cm}, 25 \mathrm{~cm}$

To find the area using Heron's formula

Let, $\mathrm{a}=26 \mathrm{~cm}, \mathrm{~b}=17 \mathrm{~cm}, \mathrm{c}=25 \mathrm{~cm}$

$
S=\frac{a+b+c}{2}=\frac{26+17+25}{2}=\frac{68}{2}=34 \mathrm{~cm}
$

$
\begin{aligned}
& \text { Area of triangle }=\sqrt{S(S-a)(S-b)(S-c)} \\
& =\sqrt{34(34-26)(34-17)(34-25)} \\
& =\sqrt{34 \times 8 \times 17 \times 9} \\
& =\sqrt{17 \times 2 \times 2 \times 2 \times 2 \times 17 \times 3 \times 3} \\
& =2 \times 2 \times 3 \times 17
\end{aligned}
$

Area of $\triangle \mathrm{ABC}=204 \mathrm{~cm}^2$

But we have 8 triangles of equal area.

So the area of design $=8 \times$ area of one $\Delta$

$
=8 \times 204=1632 \mathrm{~cm}^2
$

The remaining area of tile $=$ Area of tile - Area of design

$
=(3500-1632) \mathrm{cm}^2=1868 \mathrm{~cm}^2
$

Hence the area of the design is $1632 \mathrm{~cm}^2$ and the remaining area of the tile is $1868 \mathrm{~cm}^2$.

 

View Full Answer(1)
Posted by

infoexpert21

The dimensions of a rectangle $A B C D$ are $51 \mathrm{~cm} \times 25 \mathrm{~cm}$. A trapezium PQCD with its parallel sides QC and PD in the ratio $9: 8$, is cut 5 off from the rectangle as shown in the Figure. If the area of the trapezium PQCD is $\overline{6}$ th part of the area of the rectangle, find the lengths QC and PD.

Solution.

Given, $B C=51 \mathrm{~cm}$ and $C D=25 \mathrm{~cm}$
Area of rectangle $A B C D=(51 \times 25) \mathrm{cm}^2$
In trapezium $P Q C D$, parallel sides $Q C$ and $P D$ are in the ratio $9: 8$
Let length of $Q C=9 x$ and $P D=8 x$
We have, Area of trapezium $P Q C D=\frac{5}{6}$ th part of Area $(A B C D)$

$
\frac{1}{2} \times(\text { Sum of } \| \text { sides }) \times \text { height }=\frac{5}{6} \times \text { length } \times \text { breadth }
$

$\begin{aligned} & \frac{1}{2} \times(P D+Q C) \times C D=\frac{5}{6} \times B C \times C D \\ & \frac{1}{2} \times(8 x+9 x) \times 25=\frac{5}{6} \times 51 \times 25 \\ & \frac{1}{2} \times 17 x \times 25=\frac{5}{6} \times 51 \times 25 \\ & \frac{25}{2} \times 17 x=\frac{5}{6} \times 51 \times 25 \\ & x=\frac{5}{6} \times 51 \times 25 \times \frac{1}{17} \times \frac{2}{25}\end{aligned}$

$
\begin{aligned}
& x=5 \\
& P D=8 x \\
& =8 \times 5 \\
& =40 \mathrm{~cm} \\
& Q C=9 x \\
& =9 \times 5=45
\end{aligned}
$

The lengths of PD and QC are 40 cm and 45 cm respectively.

View Full Answer(1)
Posted by

infoexpert21

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads

In Figure, $\triangle A B C$ has sides $A B=7.5 \mathrm{~cm}, A C=6.5 \mathrm{~cm}$ and $B C=7 \mathrm{~cm}$. On base $B C$, a parallelogram, $D B C E$ of the same area as that of $\triangle A B C$ is constructed. Find the height $D F$ of the parallelogram.

  

Solution:

$
\mathrm{AB}=7.5 \mathrm{~cm}, \mathrm{AC}=6.5 \mathrm{~cm}, \mathrm{BC}=7 \mathrm{~cm}
$

Let $\mathrm{a}=7.5 \mathrm{~cm}, \mathrm{~b}=6.5 \mathrm{~cm}, \mathrm{c}=7 \mathrm{~cm}$
Now, $S=\frac{a+b+c}{2}=\frac{7.5+6.5+7}{2}=\frac{21}{2}=10.5 \mathrm{~cm}$
Area of $\triangle A B C, B y$ heron's formula $=\sqrt{S(S-a)(S-b)(S-c)}$

$
\begin{aligned}
& =\sqrt{10.5(10.5-7.5)(10.5-6.5)(10.5-7)} \\
& =\sqrt{10.5 \times 3 \times 4 \times 3.5}
\end{aligned}
$

$
\begin{aligned}
& =\sqrt{\frac{105}{10} \times 3 \times 4 \times \frac{35}{10}} \\
& =\sqrt{21 \times 3 \times 7}=\sqrt{3 \times 7 \times 3 \times 7}=3 \times 7=21 \mathrm{~cm}^2
\end{aligned}
$

Now, we find the length DF of parallelogram DBCE
Area of parallelogram $=$ base $\times$ height $=B C \times D F$
Area of parallelogram $=7 D F$
According to the question,
Area of $\triangle A B C=$ Area of parallelogram $D B C E$

$
\begin{aligned}
& 21=7 D F \\
& \frac{21}{7}=D F \\
& D F=3 \mathrm{~cm}
\end{aligned}
$

Hence the height of the parallelogram is 3 cm.

View Full Answer(1)
Posted by

infoexpert21

A field is in the shape of a trapezium having parallel sides 90 m and 30 m. These sides meet the third side at right angles. The length of the fourth side is 100 m. If it costs Rs 4 to plough $1 \mathrm{~m}^2$ of the field, find the total cost of ploughing the field.

Solution.

Given, ABCD is trapezium having parallel side $AB = 90 m$, $CD = 30 m$

So, $B E=30 \mathrm{~m}$

Now, $A E=(A B-E B)$

$A E=(90-30) m$

$A E=60 \mathrm{~m}$

So, in the right triangle $\triangle \mathrm{AED}$

$
\begin{aligned}
& (A D)^2=(A E)^2+(D E)^2 \\
& (100)^2=(60)^2+(D E)^2 \\
& 10000=3600+(D E)^2 \\
& 10000-3600=(D E)^2 \\
& 6400=(D E)^2
\end{aligned}
$

Taking square root on both sides

$
\sqrt{6400}=\sqrt{(D E)^2}
$

$
D E=80 \mathrm{~m}
$

We know that the area of trapezium $A B C D=\frac{1}{2} \times($ sum of parallel sides $) \times$ height

$
\begin{aligned}
& =\frac{1}{2} \times(A B+C D) \times D E \\
& =\frac{1}{2} \times(90+30) \times 80 \\
& =120 \times 40=4800 \mathrm{~m}^2 \\
& \because \text { cost of ploughing } 1 \mathrm{~m}^2 \text { field }=\text { Rs } 4
\end{aligned}
$

$\therefore$ cost of ploughing $4800 \mathrm{~m}^2$ field $=4800 \times 4=$ Rs. 19200

Hence the total cost of ploughing the field is Rs. 19200.

 

View Full Answer(1)
Posted by

infoexpert21

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE

A rectangular plot is given for constructing a house, having a measurement of 40 m long and 15 m in the front. According to the laws, a minimum of 3 m, wide space should be left in the front and back each and 2 m wide space on each of other sides. Find the largest area where house can be constructed.

[374\; m^{2}]

Let ABCD be the rectangular plot,

AB = 40 cm, AD = 15 cm

                                        

Given that minimum of 3 m wide space should be left in the front and back

length \; of \; PQ = [AB - (3 + 3)] \; m

PQ = [40 - 6] \; m

PQ = 34 \; m

Similarly, RS = 34 m

Given that 2 m wide space on each of other sides is to be left

Length\; of \; PS = [AD - (2 + 2)] \; m

PS = [15 - 4] \; m

PS = 11 \; m \; and

QR = 11 \; m

So here PQRS is another rectangle formed in the rectangle ABCD

So, Area of rectangle PQRS = length \times breadth

= PQ\times PS= \left ( 34\times 11 \right )\; m^{2}= 374\; m^{2}

Hence the area of house can be constructed in 374 m^{2}

 

View Full Answer(1)
Posted by

infoexpert21

The area of a trapezium is $475 \mathrm{~cm}^2$ and the height is 19 cm . Find the lengths of its two parallel sides if one side is 4 cm greater than the other.

Solution

Let the smaller parallel side be $CD = x$ cm

                  

Then other parallel side $A B=(x+4) \mathrm{cm}$
Given, area of trapezium $=475 \mathrm{~cm}^2$
Height DE $=19 \mathrm{~cm}$
We know that, Area oftrapezium $=\frac{1}{2} \times$ height $\times($ sum of parallel sides $)$

$
\begin{aligned}
& 475=\frac{1}{2} \times D E \times(D C+A B) \\
& 475 \times 2=19 \times(x+x+4)
\end{aligned}
$

$\begin{aligned} & \frac{475 \times 2}{19}=2 x+4 \\ & 25 \times 2=2 x+4 \\ & 50=2 x+4 \\ & 50-4=2 x \\ & 46=2 x \\ & x=\frac{46}{2} \\ & x=23 \mathrm{~cm}\end{aligned}$

So the smaller side CD is $23$ cm and the other parallel side AB is $(23 + 4)$ cm = $27$ cm

 

View Full Answer(1)
Posted by

infoexpert21

NEET 2024 Most scoring concepts

    Just Study 32% of the NEET syllabus and Score up to 100% marks


The perimeter of a triangle is 50 cm. One side of a triangle is 4 cm longer than the smaller side and the third side is 6 cm less than twice the smaller side. Find the area of the triangle.

Solution

Let the smaller side of the triangle be x cm

Let BC = x cm

According to the question,

One side of a triangle is 4 cm longer than the smaller side

Let this side be AC = x + 4

Also, the third side is 6 cm less than twice the smaller side

Let this side be AB = (2x - 6) cm

Given the perimeter of \DeltaABC = 50 cm

x + x + 4 + 2x - 6 = 50

4x - 2 = 50

4x = 50+2

4x = 52

x = \frac{52}{4}

x = 13 \; cm

So\; the\; side \; AC = (x + 4) = (13 + 4) = 17\; cm

Side\; AB = \left ( 2x-6 \right )\; cm= \left ( 26-6 \right )\; cm= 20\; cm

Now in \DeltaABC, a = 13 cm, b = 17 cm, and c = 20 cm

Using Heron’s formula

S= \frac{a+b+c}{2}= \frac{13+17+20}{2}= \frac{50}{2}= 25\; cm

Area \; of\; \Delta ABC =\sqrt{S\left ( S-a \right )\left ( S-b \right )\left ( S-c \right )}

=\sqrt{25\left ( 25-13 \right )\left ( 25-17 \right )\left ( 25-20 \right )}

=\sqrt{25\times 12\times 8\times 5}

=\sqrt{5\times 5\times 2\times 2\times 3\times 2\times 2\times 2\times 5}

=\sqrt{5\times 5\times 5\times 2\times 2\times 2\times 2\times 2\times 3}

= 5\times 2\times 2\sqrt{30}

Area \; of \; \Delta ABC = 20\sqrt{30}\; cm^{2}

Hence\; the \; area\; of\; triangle\; is \; 20\sqrt{30}\; cm^{2}

View Full Answer(1)
Posted by

infoexpert21

How much paper of each shade is needed to make a kite given in Figure, in which ABCD is a square with a diagonal of 44 cm.

 

              .

Red = 242 \; cm^{2}

Yellow = 484\; cm^{2}

Green = 373.14 \; cm^{2}

Given,\; ABCD\; is\; a\; square.

We know that all sides of a square are equal

AB = BC = CD = DA and

\angle A = \angle B = \angle C = \angle D = 90^{\circ} [\because \; All\; angles\; of\; a\; square\; are\; 90^{\circ}]

In \Delta ABC,\; using \; Pythagoras \; theorem

(AC)^{2} = (AB)^{2}+ (BC)^{2}

(44)^{2} = (AB)^{2}+ (BC)^{2}\; \; \; \; \; \; \; \; [\Theta \; AB = BC\; equal\; sides]

44\times 44=2\left ( AB \right )^{2}

\frac{44\times 44}{2}=\left ( AB \right )^{2}

(AB)^{2} = 22 \times 44

Taking square root on both sides

\sqrt{\left ( AB \right )^{2}}=\sqrt{22\times 44}

AB=\sqrt{22\times 2\times 22}

AB=22\sqrt{2}

AB = BC = CD = DA =22\sqrt{2}\; cm

Now,\; Area\; of \; square\; ABCD = (side)^{2}

=\left ( 22\sqrt{2}\right )^{2}=22\times 22\times \sqrt{2}\times \sqrt{2}

= 484\times \sqrt{2\times 2}=484\times 2

Area\; of\; square\; ABCD = 968\; cm^{2}

But square ABCD is divided into four coloured squares.

So,\; area\; of\; Yellow \; I =\frac{968}{4}= 242 cm^{2}

Area\; of\; Yellow \; II =\frac{968}{4}= 242 \; cm^{2}

Area\; of\; Green \; III =\frac{968}{4}= 242 \; cm^{2}

Area\; of\; Red \; IV =\frac{968}{4}= 242 \; cm^{2}

Total\; yellow\; area\; = 242\; cm^{2} + 242\; cm^{2} = 484\; cm^{2}

We have to find the lower triangle of green colour as well.

Let\; a = 20\; cm, b = 20\; cm, c = 14\; cm

Semi\; perimeter(s) = \frac{a+b+c}{2}

= \frac{20+20+14}{2}

= \frac{54}{2}=27

Area of Triangular field:

By\; heron's\; formula =\sqrt{S\left ( S-a \right )\left ( S-b \right )\left ( S-c \right )}

=\sqrt{27\left ( 27-20\right )\left ( 27-20 \right )\left ( 27-14 \right )}

= \sqrt{3\times 3\times 3\times 7\times 7\times 13}

= 21\sqrt{3\times 13}

= 131.14\; cm^{2}

So\; total\; green\; area\; = 242 + 131.14 = 373.14\; cm^{2}

Hence,\; paper\; required

Red = 242\; cm^{2}

Yellow = 484\; cm^{2}

green = 373.14\; cm^{2}

View Full Answer(1)
Posted by

infoexpert21

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads

Find the area of the trapezium PQRS with height PQ given in Figure.

Solution

Firstly\; we\; have\; side \; PS = 12 m, SR = 13, QR = 7 m

Join RT

So here PT = PS – ST

PT = 12 m – 5 m

PT = 7 m

and ST = PS – PT

ST = \left ( 12-7 \right )m

ST = 5 m

Now, In \DeltaSTR, Using Pythagoras theorem

We\; get, (SR)^{2} = (ST)^{2} + (TR)^{2}

(13)^{2} = (5)^{2} + (TR)^{2}

169 = 25 + (TR)^{2}\; \; \; \; \; \; \; \; \; \; \; [(13)^{2} = 169 \; and\; (5)^{2} = 25]

169 - 25 = (TR)^{2}

144 = (TR)^{2}\; \; \; \; \; \; \; \; \; \; \; \; [ \sqrt{144} = 12]

TR = 12cm\; \; \; \; \; \; \; \; \; \; \; \; [ \sqrt{12\times 12} = 12]

Now, we can find the area of the trapezium

Area \; of\; trapezium = \frac{1}{2} \times [sum\; of \; parallel\; sides] \times height

= \frac{1}{2}\times \left [ 12+7 \right ]\times 12

= 19\times 6\; cm^{2}

= 114\; cm^{2}

Hence, the\; area\; of\; trapezium\; is\; 114\; cm^{2}.

View Full Answer(1)
Posted by

infoexpert21

A rhombus-shaped sheet with a perimeter of 40 cm and one diagonal of 12 cm, is painted on both sides at the rate of Rs 5 per cm^{2}. Find the cost of painting.

Solution

Let ABCD be a rhombus thus AB = BC = CD = DA = x (Let)

We \; have\; perimeter \; of \; rhombus = 40 cm

\Rightarrow AB + BC + CD + DA = 40 cm

\Rightarrow x + x + x + x = 40 cm

\Rightarrow 4x = 40 cm

\Rightarrow x = \frac{40}{4} cm

\Rightarrow x = 10 cm

\therefore sides \; of \; rhombus \; AB = BC = CD = DA = 10 cm

Area of rhombus = 2 \times Ar(\DeltaABC)     [diagonal of rhombus divides it into two triangles of equal area]

Now, we find area of triangle using Heron’s formula

In\; \Delta ABC, S=\frac{a+b+c}{2}= \frac{10+10+12}{2}= \frac{32}{2}= 16cm

Area \; of\; \Delta ABC =\sqrt{S\left ( S-a \right )\left ( S-b \right )\left ( S-c \right )}

=\sqrt{16\left ( 16-10 \right )\left ( 16-10 \right )\left ( 16-12 \right )}

= \sqrt{16\times 6\times 6\times 4}

= \sqrt{8\times 8\times 6\times 6\times 4}

= \sqrt{4\times 4\times 6\times 6\times 4}

= 4\times 6\sqrt{2\times 2}

= 4\times 6\times 2= 48cm^{2}

Now, Area of rhombus = 2 \times Ar(\DeltaABC)

= 2\times 40cm^{2}= 96cm^{2}

We find the cost of painting

Thus,

\because cost\; of \; painting\; the\; sheet \; of\; 1 cm^{2} = Rs.\; 5

\therefore cost \; of\; painting\; the \; sheet\; of \; 96\; cm^{2}= 96 \times 5 = Rs.\; 480

Hence, the cost of the painting on both sides of the sheet = 2 \times 480 = Rs. 960.

 

View Full Answer(1)
Posted by

infoexpert21

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE

filter_img