Get Answers to all your Questions

header-bg qa
Filter By

All Questions

A random variable X has the following probability distribution:          X: \: \: 1\; \; \: \: 2\; \;\: \: \: \: 3\; \; \: \: \: \: \: 4\: \: \: \; \; \: \: 5 P(X): \;K^{2}\; \; 2K\; \; K\; \; 2K\; \; 5K^{2} Then P(X>2) is equal to: 
Option: 1 \frac{7}{12}
Option: 2 \frac{23}{36}
Option: 3 \frac{1}{36}
Option: 4 \frac{1}{6}
 

Option 2

View Full Answer(10)
Posted by

ritik.gaur

Let a_{n} be the nth term of a G.P. of positive terms. If \sum_{n=1}^{100}a_{2n+1}=200\: \: and\: \: \sum_{n=1}^{100}a_{2n}=100,\: \: then\: \sum_{n=1}^{200}a_n is equal to :   
Option: 1 300
Option: 2 175
Option: 3 225
Option: 4 150
 

150

View Full Answer(5)
Posted by

Nalla mahalakshmi

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads

If x=\sum_{n=0}^{\infty }(-1)^{n}\tan ^{2n}\theta \: \: and\: \: y=\sum_{n=0}^{\infty }\cos ^{2n}\theta , for 0<\theta < \frac{\pi }{4}, then
Option: 1 y(1+x)=1
Option: 2 x(1-y)=1
Option: 3 y(1-x)=1
Option: 4 x(1+y)=1
 

x=\sum_{n=0}^{\infty}(-1)^{n} \tan ^{2 n} \theta=1-\tan^2\theta+\tan^4\theta..........

y=\sum_{n=0}^{\infty} \cos ^{2 n} \theta=1+\cos^2\theta+\cos^4\theta......

Use \text S_{\infty}=\frac{1}{1-r}

{x=\frac{1}{1+\tan ^{2} \alpha}=\cos ^{2} \theta} \\ {y=\frac{1}{1-\cos ^{2} \theta}=\frac{1}{\sin ^{2} \theta}}

\Rightarrow (1-x)= \sin ^{2} \theta

\Rightarrow y(1-x)=1

Correct Option (3)

View Full Answer(1)
Posted by

avinash.dongre

If z be a complex number satisfying \left | Re\left ( z \right ) \right |+\left | Im(z) \right |=4, then \left | z \right | cannot be : 
Option: 1 \sqrt{7}
 
Option: 2 \sqrt{\frac{17}{2}}
 
Option: 3 \sqrt{10}
 
Option: 4 \sqrt{8}
 
 

Option d

 

View Full Answer(3)
Posted by

Shravani.D.K

Crack NEET with "AI Coach"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
neet_ads

The following system of linear equations  7x+6y-2z=0 3x+4+2z=0 x-2y-6z=0, has 
Option: 1 infinitely many solutions, (x,y,z) satisfying y=2z.
Option: 2 infinitely many solutions, (x,y,z) satisfying x=2z.
Option: 3 no solution
Option: 4 only the trivial solution. 
 

 

 

System of Homogeneous linear equations -

\\\mathrm{Let,} \\\mathrm{a_1x+b_1y +c_1z=0\;\;\; ...(i)} \\\mathrm{a_2x+b_2y +c_2z=0\;\;\; ...(ii)} \\\mathrm{a_3x+b_3y +c_3z=0\;\;\; ...(iii)} \\\mathrm{be \; three\; homogeneous\; equation} \\\mathrm{and \; let\; \Delta = \begin{vmatrix} a_1 & b_1 & c_1\\ a_2 & b_2 & c_2\\ a_3 & b_3 & c_3 \end{vmatrix}}

 

If ? ≠ 0, then x= 0, y = 0, z = 0 is the only solution of the above system. This solution is also known as a trivial solution.

If ? = 0, at least one of x, y and z are non-zero. This solution is called a non-trivial solution.

Explanation: using equation (ii) and (iii), we have 

 

\\\mathrm{\frac{x}{b_2c_3-b_3c_2} = \frac{y}{c_2a_3-c_3a_2}=\frac{z}{a_2b_3-a_3b_2}} \\\\\mathrm{or \;\; \frac{x}{\begin{vmatrix} b_2 &c_2 \\ b_3 & c_3 \end{vmatrix}}=\frac{y}{\begin{vmatrix} c_2 &a_2 \\ c_3 & a_3 \end{vmatrix}} = \frac{z}{\begin{vmatrix} a_2 & b_2\\ a_3 & b_3 \end{vmatrix}} = k (say \neq 0)} \\\mathrm{\therefore x = k\begin{vmatrix} b_2 &c_2 \\ b_3 & c_3 \end{vmatrix}, y = k\begin{vmatrix} c_2& a_2\\ c_3 & a_3 \end{vmatrix} \; and \; z = k\begin{vmatrix} a_2 & b_2\\ a_3 & b_3 \end{vmatrix}} \\\mathrm{putting\; these\; value\; in \; equation \; (i), we\; have} \\\mathrm{a_1\left \{ k\begin{vmatrix} b_2 & c_2\\ b_3 & c_3 \end{vmatrix} \right \}+b_1\left \{ k\begin{vmatrix} c_2 & a_2\\ c_3 & a_3 \end{vmatrix} \right \}+c_1\left \{ \begin{vmatrix} a_2 & b_2\\ a_3 & b_3 \end{vmatrix} \right \}=0}

 

\\\mathrm{\Rightarrow a_1\begin{vmatrix} b_2 &c_2 \\ b_3 & c_2 \end{vmatrix}-b_1\begin{vmatrix} a_2 & c_2\\ a_3 &c_3 \end{vmatrix}+c_1\begin{vmatrix} a_2 &b_2 \\ a_3 &b_3 \end{vmatrix} = 0 \;\;\;[\because \; k \neq 0]} \\\mathrm{or \;\; \begin{vmatrix} a_1 & b_1 & c_1\\ a_2 & b_2 & c_2\\ a_3 & b_3 & c_3 \end{vmatrix} = 0 \; or \; \Delta = 0}

This is the condition for a system have Non-trivial solution.

-

 

 

\begin{aligned} &(1)\;\;7 x+6 y-2 z=0\\ &(2)\;\;3 x+4 y+2 z=0\\ &(3)\;\;x-2 y-6 z=0 \end{aligned}

\left|\begin{array}{ccc}{7} & {6} & {-2} \\ {3} & {4} & {2} \\ {1} & {-2} & {-6}\end{array}\right| =7(-20)-6(-20)-2(-10)=-140+120+20=0

so infinite non-trivial solution exist

now equation (1) + 3 equation (3)

10x - 20z = 0

x = 2z

Correct Option 2

View Full Answer(1)
Posted by

avinash.dongre

Let a-2b+c=1.  If f\left ( x \right )= \begin{vmatrix} x+a & x+2 &x+1 \\ x+b &x+3 &x+2 \\ x+c &x+4 & x+3 \end{vmatrix}, then :   
Option: 1 f(-50)=501
Option: 2 f(-50)=-1
Option: 3 f(50)=1
Option: 4 f(50)=-501
 

 

 

Elementary row operations -

Elementary row operations

Row transformation: Following three types of operation (Transformation) on the rows of a given matrix are known as elementary row operation (transformation).

    i) Interchange of ith row with jth row, this operation is denoted by 

        \\\mathrm{R_i \leftrightarrow R_j \;\;or\; R_{ij}}

    ii) The multiplication of ith row by a constant k (k≠0) is denoted by

         \\\mathrm{R_i \leftrightarrow kR_i \;\; or \; k\cdot R_i}    

    iii) The addition of ith row to the elements of jth row multiplied by constant k (k≠0) is denoted by

        \\\mathrm{R_i \leftrightarrow R_i + kR_j \;\; or \; k\cdot R_{ij}}

In the same way, three-column operations can also be defined too.

-

 

 

\\\text { Apply } \mathrm{R}_{1}=\mathrm{R}_{1}+\mathrm{R}_{3}-2 \mathrm{R}_{2}\\\Rightarrow f(x)=\left|\begin{array}{ccc}{1} & {0} & {0} \\ {x+b} & {x+3} & {x+2} \\ {x+c} & {x+4} & {x+3}\end{array}\right| \quad \Rightarrow f(x)=1 \\\quad \Rightarrow f(50)=1

Correct Option (3)

View Full Answer(1)
Posted by

avinash.dongre

Crack JEE Main with "AI Coach"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
jee_ads

Let \left [ t \right ] denote the greatest integer \leq t and \lim_{x\rightarrow 0}x\left [ \frac{4}{x} \right ]=A. Then the function, f\left ( x \right )=\left [ x^{2} \right ]\sin \left ( \pi x \right ) is discontinuous, when x is equal to: 
Option: 1 \sqrt{A+1}
 
Option: 2 \sqrt{A}
 
Option: 3 \sqrt{A+5}
 
Option: 4 \sqrt{A+21}
 
 

 

 

 

\\\lim _{x \rightarrow 0} x\left(\frac{4}{x}-\left\{\frac{4}{x}\right\}\right)=A \quad \Rightarrow \lim _{x \rightarrow 0} 4-x\left\{\frac{4}{x}\right\}=A\\\Rightarrow 4-0=A

\\\text { (1) } x=\sqrt{A+1} \Rightarrow x=\sqrt{5} \Rightarrow \text { discontinuous }\\\text { (2) } x=\sqrt{A+21} \Rightarrow x=5 \Rightarrow \text { continuous }\\\text { (3) } x=\sqrt{A} \Rightarrow x=2 \Rightarrow \text { continuous }\\\text { (4) } x=\sqrt{A+5} \Rightarrow x=3 \Rightarrow \text { continuous }

Correct Option (1)

View Full Answer(1)
Posted by

avinash.dongre

Let a,b\epsilon \textbf{R},a\neq 0 be such that the equation, ax^{2}-2bx+5=0 has a repeated root \alpha, which is also a root of the equation, x^{2}-2bx-10=0. If \beta is the other root of this equation, then \alpha ^{2}+\beta ^{2} is equal to:
Option: 1 24
Option: 2 25
Option: 3 26
Option: 4 28
 

 

 

Nature of Roots -

Let the quadratic equation is ax2 + bx + c = 0

D is the discriminant of the equation.

iii) if roots D = 0, then roots will be real and equal, then


\\\mathrm{x_1=x_2 = \frac{-b}{2a} } \\\mathrm{Then, \;\; ax^2+bx +c =a(x-x_1)^2 }

-

ax2 – 2bx + 5 = 0 having equal roots or D=0 and \alpha=\frac{b}{a}

(2b)^2=4\times5\times a\;\;\Rightarrow \;\;b^2=5a

Put \alpha=\frac{b}{a} in the second equation

{x^{2}-2 b x-10=0} \\ {\Rightarrow b^{2}-2 a b^{2}-10 a^{2}=0}

\\\Rightarrow 5 a-10 a^{2}-10 a^{2}=0 \\ \Rightarrow 20 a^{2}=5 a \\ \Rightarrow a=\frac{1}{4} \text { and } \mathrm{b}^{2}=\frac{5}{4} \\ \alpha^{2}= 20 \text { and } \beta^{2}=5 \\ \alpha^{2}+\beta^{2} \\ =5+20 \\ =25

Correct Option 2

View Full Answer(1)
Posted by

avinash.dongre

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads

In the expansion of \left ( \frac{x}{cos\theta }+\frac{1}{x\sin \theta } \right )^{16}, if  L_{1}  is the least value of the term independent of x when \frac{\pi }{8}\leq \theta \leq \frac{\pi }{4} and  L_{2}  is the least value of the term independent of x when \frac{\pi }{16}\leq \theta \leq \frac{\pi }{8}, then the ratio L_{2}:L_{1}  is equal to : 
Option: 1 16:1
Option: 2 8:1
Option: 3 1:8
Option: 4 1:16
 

General Term of Binomial Expansion\left(T_{r+1}\right)^{\mathrm{th}} \text { term is called as general term in }(x+y)^{n}\;\text{and general term is given by}

\mathrm{T}_{\mathrm{r}+1}=^{\mathrm{n}} \mathrm{C}_{\mathrm{r}} \mathrm{\;x}^{\mathrm{n}-\mathrm{r}} \cdot \mathrm{y}^{\mathrm{r}}

Term independent of x: It means term containing x0,

 

Now,

\\\mathrm{T}_{\mathrm{r}+1}=^{16} \mathrm{C}_{\mathrm{r}}\left(\frac{\mathrm{x}}{\cos \theta}\right)^{16-\mathrm{r}}\left(\frac{1}{\mathrm{x} \sin \theta}\right)^{\mathrm{r}}\\\text{for r = 8 term is free from 'x' }\\\begin{aligned} &\mathrm{T}_{9}=^{16} \mathrm{C}_{8} \frac{1}{\sin ^{8} \theta \cos ^{8} \theta}\\ &\mathrm{T}_{9}=^{16} \mathrm{C}_{8} \frac{2^{8}}{(\sin 2 \theta)^{8}}\\ &\text { in } \theta \in\left[\frac{\pi}{8}, \frac{\pi}{4}\right], L_{1}=^{16} \mathrm{C}_{8} 2^{8} \end{aligned}

\\\because \text{Min value of L}_1\;\text{at }\theta=\pi/4\\\text { in } \theta \in\left[\frac{\pi}{16}, \frac{\pi}{8}\right], L_{2}=16 \mathrm{C}_{8} \frac{2^{8}}{\left(\frac{1}{\sqrt{2}}\right)^{8}}=^{16} \mathrm{C}_{8} \cdot 2^{8} \cdot 2^{4}\\\\\because \text{Min value of L}_2\;\text{at }\theta=\pi/8\\\frac{L_{2}}{L_{1}}=\frac{16 \mathrm{C}_{8} \cdot 2^{8} 2^{4}}{^{16} \mathrm{C}_{8} \cdot 2^{8}}=16

Correct option 1

View Full Answer(1)
Posted by

avinash.dongre

Let f and g be differentiable functions on R such that fo g is the identity function. If for some a,b\epsilon \textbf{R},g^{'}(a)=5\: \: and\: \: g(a)=b then f^{'}(b) is equal to :   
Option: 1 \frac{2}{5}
Option: 2 5
Option: 3 1
Option: 4 \frac{1}{5}
 

 

 

Rules of Differentiation (Chain Rule) -

Rules of Differentiation (Chain Rule)

Chain Rule or Derivation of Composite Function:

The chain rule, which states that the derivative of a composite function is the derivative of the outer function evaluated at the inner function times the derivative of the inner function.

Let f and g be functions. For all x in the domain of g for which g is differentiable at x and f is differentiable at g(x), the derivative of the composite function

h(x) = (f?g)(x) = f (g(x)) Is given by

h′(x) = f’(g(x))?g’(x)

Composites of Three or More Functions

For all values of x for which the function is differentiable, if k(x) = h(f(g(x)))Then,

k^{\prime}(x)=h'\left ( f(g(x)) \right )\cdot f'\left ( g(x) \right )\cdot g'(x)

-

\\f(g(x))=x \\\Rightarrow f^{\prime}(g(x)) \cdot g^{\prime}(x)=1 \\Put \;\;x=a \\\Rightarrow f^{\prime}(g(a)) g^{\prime}(a)=1 \\\Rightarrow f^{\prime}(b) \times 5=1 \Rightarrow f^{\prime}(b)=\frac{1}{5}

Correct Option 4

View Full Answer(1)
Posted by

avinash.dongre

Crack NEET with "AI Coach"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
neet_ads
filter_img