Get Answers to all your Questions

header-bg qa
Filter By

All Questions

If \frac{\mathrm{d} y}{\mathrm{d} x}=\frac{xy}{x^{2}+y^{2}};y(1)=1; then a value of x satisfying y(x)=e is :   
Option: 1 \sqrt{3}\: e
 
Option: 2 \frac{1}{2}\sqrt{3}\: e
 
Option: 3 \sqrt{2}\: e
 
Option: 4 \frac{e}{\sqrt{2}}
 
 

√3e

View Full Answer(4)
Posted by

Nalla mahalakshmi

If z be a complex number satisfying \left | Re\left ( z \right ) \right |+\left | Im(z) \right |=4, then \left | z \right | cannot be : 
Option: 1 \sqrt{7}
 
Option: 2 \sqrt{\frac{17}{2}}
 
Option: 3 \sqrt{10}
 
Option: 4 \sqrt{8}
 
 

Option d

 

View Full Answer(3)
Posted by

Shravani.D.K

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads

Let a,b\epsilon \textbf{R},a\neq 0 be such that the equation, ax^{2}-2bx+5=0 has a repeated root \alpha, which is also a root of the equation, x^{2}-2bx-10=0. If \beta is the other root of this equation, then \alpha ^{2}+\beta ^{2} is equal to:
Option: 1 24
Option: 2 25
Option: 3 26
Option: 4 28
 

 

 

Nature of Roots -

Let the quadratic equation is ax2 + bx + c = 0

D is the discriminant of the equation.

iii) if roots D = 0, then roots will be real and equal, then


\\\mathrm{x_1=x_2 = \frac{-b}{2a} } \\\mathrm{Then, \;\; ax^2+bx +c =a(x-x_1)^2 }

-

ax2 – 2bx + 5 = 0 having equal roots or D=0 and \alpha=\frac{b}{a}

(2b)^2=4\times5\times a\;\;\Rightarrow \;\;b^2=5a

Put \alpha=\frac{b}{a} in the second equation

{x^{2}-2 b x-10=0} \\ {\Rightarrow b^{2}-2 a b^{2}-10 a^{2}=0}

\\\Rightarrow 5 a-10 a^{2}-10 a^{2}=0 \\ \Rightarrow 20 a^{2}=5 a \\ \Rightarrow a=\frac{1}{4} \text { and } \mathrm{b}^{2}=\frac{5}{4} \\ \alpha^{2}= 20 \text { and } \beta^{2}=5 \\ \alpha^{2}+\beta^{2} \\ =5+20 \\ =25

Correct Option 2

View Full Answer(1)
Posted by

avinash.dongre

The  number of real roots of the equation,  e^{4x}+e^{3x}-4e^{2x}+e^{x}+1=0  is :   
Option: 1 3
Option: 2 4
Option: 3 1
Option: 4 2
 

 

 

Transcendental function -

Transcendental functions:  the functions which are not algebraic are called transcendental functions. Exponential, logarithmic, trigonometric and inverse trigonometric functions are transcendental functions.

Exponential Function: function f(x) such that \mathrm{f(x)=a^x} is known as an exponential function.

\\\mathrm{base:\;\;a>0,a\neq1}\\\mathrm{domain:x\in \mathbb{R}}\\\mathrm{range:f(x)>0}

 

 

Logarithmic function:  function f(x) such that f\left ( x \right )= \log\: _{a}x is called logarithmic function 

\\\mathrm{base:\;\;a>0,a\neq1}\\\mathrm{domain:x>0}\\\mathrm{range:f(x)\in\mathbb{R}}
         

                    If a > 1                                                                               If a < 1

Properties of Logarithmic Function

\\\mathrm1.\;{\log_e(ab)=\log_ea+\log_eb}\\\mathrm{2.\;\log_e\left ( \frac{a}{b} \right )=\log_ea-\log_e b}\\\mathrm{3.\;\log_ea^m=m\log_ea}\\\mathrm{4.\;\log_aa=1}\\\mathrm{5.\;\log_{b^m}a=\frac{1}{m}\log_ba}\\\mathrm{6.\;\log_ba=\frac{1}{\log_ab}}\\\mathrm{7.\;\log_ba=\frac{\log_ma}{\log_mb}}\\\mathrm{8.\;a^{\log_am}=m}\\\mathrm{9.\;a^{\log_cb}=b^{\log_ca}}\\\mathrm{10.\;\log_ma=b\Rightarrow a=m^b}

-

 

 

 

Quadratic Equation -

The root of the quadratic equation is given by the formula:

 

\\\mathrm{x = \frac{-b \pm \sqrt{D}}{2a}}\\\\\mathrm{or} \\\mathrm{x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}}

 Where D is called the discriminant of the quadratic equation, given by D = b^2 - 4ac ,

 

-

 

Let e^{x}=t \in(0, \infty)

Now the equation 

\begin{array}{l}{t^{4}+t^{3}-4 t^{2}+t+1=0} \\ {t^{2}+t-4+\frac{1}{t}+\frac{1}{t^{2}}=0} \\ {\left(t^{2}+\frac{1}{t^{2}}\right)+\left(t+\frac{1}{t}\right)-4=0}\end{array}

Let \mathrm{t}+\frac{1}{\mathrm{t}}=\alpha

\begin{array}{l}{\left(\alpha^{2}-2\right)+\alpha-4=0} \\ {\alpha^{2}+\alpha-6=0} \\ {\alpha^{2}+\alpha-6=0}\end{array}

\alpha=-3,2

Only positive value possible so \alpha=2 \Rightarrow \quad \mathrm{e}^{x}+\mathrm{e}^{-\mathrm{x}}=2

x=0 is the only solution.

View Full Answer(1)
Posted by

avinash.dongre

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE

The least positive value of 'a' for which the equation, 2x^{2}+(a-10)x+\frac{33}{2}=2a has real roots is
Option: 1 8
Option: 2 6
Option: 3 4
Option: 42
 

 

 

Nature of Roots -

Let the quadratic equation is ax2 + bx + c = 0

D is the discriminant of the equation.

 

ii) If D > 0, then roots will be real and distinct. 

\\\mathrm{x_1 = \frac{-b + \sqrt{D}}{2a} } \;\mathrm{and \;\;x_2 = \frac{-b - \sqrt{D}}{2a} } \\\\\mathrm{Then,\;\; ax^2+bx +c =a(x-x_1)(x-x_2) }

 

iii) if roots D = 0, then roots will be real and equal, then


\\\mathrm{x_1=x_2 = \frac{-b}{2a} } \\\mathrm{Then, \;\; ax^2+bx +c =a(x-x_1)^2 }

-

{D \geqslant 0} \\\\ {(a-10)^{2}-8\left(\frac{33}{2}-2 a\right) \geq 0} \\\\ {a^{2}+100-20 a-132+16 a \geq 0}

\\ {a^{2}-4 a-32 \geqslant 0} \\\\ {a^{2}-8 a+4 a-32 \geq 0} \\\\ {(a+4)(a-8) \geq 0}

a \leq -4 \ \text{ or }\ a \geq \ 8

least positive value is 8.

View Full Answer(1)
Posted by

Kuldeep Maurya

If the equation, x^{2}+bx+45=0(b\epsilon R) has conjugate complex roots and they satisfy \left | z+1 \right |=2\sqrt{10}, then:
 
Option: 1 b^{2}+b=12
Option: 2 b^{2}-b=42
Option: 3 b^{2}-b=30
Option: 4 b^{2}+b=72
 

 

 

Nature of Roots -

Let the quadratic equation is ax2 + bx + c = 0

D is the discriminant of the equation.

 

i) if D < 0, then root are in the form of complex number, 

   If a,b,c ∈ R (real number) then roots will be conjugate of each other, means if p + iq is one of          

   the roots then other root will be p - iq

 

-

 

 

Let  z=\alpha\pm i\beta be roots of the equation

so 2 \alpha=-b \text { and } \alpha^{2}+\beta^{2}=45,(\alpha+1)^{2}+\beta^{2}=40

So, (\alpha+1)^{2}-\alpha^{2}=-5

\begin{array}{l}{\Rightarrow \quad 2 \alpha+1=-5 \quad \Rightarrow \quad 2 \alpha=-6} \\ {\text { so } \mathrm{b}=6}\end{array}\\Hence,\;\;b^2-b=30

Correct Option 3

View Full Answer(1)
Posted by

Kuldeep Maurya

NEET 2024 Most scoring concepts

    Just Study 32% of the NEET syllabus and Score up to 100% marks


If a, b and c are the greatest values of ^{19}C_{p},^{20}C_{q},^{21}C_{r} respectively, then:
 
Option: 1 \frac{a}{11}=\frac{b}{22}=\frac{c}{42}
Option: 2 \frac{a}{10}=\frac{b}{11}=\frac{c}{42}
Option: 3 \frac{a}{11}=\frac{b}{22}=\frac{c}{21}
Option: 4 \frac{a}{10}=\frac{b}{11}=\frac{c}{21}
 

Binomial Coefficient of the middle term is greatest.

 

Now,

\\^nC_{r}\;\text{ is max at middle term}\\\begin{array}{l}{a=^{19} C_{p}=^{19} C_{10}=^{19} C_{9}} \\ {b=^{20} C_{q}=^{20} C_{10}} \\ {c=^{21} C_{r}=^{21} C_{10}=^{21} C_{11}}\end{array}

\frac{a}{^{19}C_9}=\frac{b}{ ^{20} \mathrm{C}_{10}}=\frac{c}{^{21} \mathrm{C}_{11}}

\frac{a}{^{19}C_9}=\frac{b}{\frac{20}{10} \cdot ^{19} \mathrm{C}_9}=\frac{c}{\frac{21}{11} \cdot \frac{20}{10} ^{19} \mathrm{C}_{9}}

\\\frac{a}{1}=\frac{b}{2}=\frac{c}{42 / 11}\\\frac{a}{11}=\frac{b}{22}=\frac{c}{42}

Correct Option (1)

View Full Answer(1)
Posted by

Kuldeep Maurya

Let y=y(x) be a solution of the differential equation, \sqrt{1-x^{2}}\frac{dy}{dx}+\sqrt{1-y^{2}}=0,\left | x \right |<1. If y\left ( \frac{1}{2} \right )=\frac{\sqrt{3}}{2}, then y\left ( \frac{-1}{\sqrt{2}} \right ) is equal to :
Option: 1 -\frac{1}{\sqrt{2}}
Option: 2 -\frac{\sqrt{3}}{2}
Option: 3 \frac{1}{\sqrt{2}}
Option: 4 \frac{\sqrt{3}}{2}
 

 

 

Formation of Differential Equation and Solutions of a Differential Equation -

This is the general solution of the differential equation (2), which represents the family of the parabola (when a = 1) and one member of the family of parabola is given in Eq (1).

Also, Eq (1) is a particular solution of the differential equation (2).

 

The solution of the differential equation is a relation between the variables of the equation not containing the derivatives, but satisfying the given differential equation.

 

A general solution of a differential equation is a relation between the variables (not involving the derivatives) which contains the same number of the arbitrary constants as the order of the differential equation. 

 

Particular solution of the differential equation obtained from the general solution by assigning particular values to the arbitrary constant in the general solution.

-

 

 

\sqrt{1-x^{2}} \frac{d y}{d x}=-\sqrt{1-y^{2}}

{\frac{d y}{\sqrt{1-y^{2}}}=-\frac{d x}{\sqrt{1-x^{2}}} \Rightarrow \sin ^{-1} y=-\sin ^{-1} x+c} \\ {x=\frac{1}{2}, y=\frac{\sqrt{3}}{2} \Rightarrow \frac{\pi}{2}=-\frac{\pi}{6}-c}

\begin{aligned} \sin ^{-1} y &=\frac{\pi}{2}-\sin ^{-1} x \\ &=\cos ^{-1} x \Rightarrow y=\sin (\cos^{-1}x) \end{aligned}

y\left ( \frac{1}{\sqrt{2}} \right ) =\frac{1}{\sqrt2}

Correct Option (3)

View Full Answer(1)
Posted by

Kuldeep Maurya

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads

If the sum of the coefficients of all even powers of x in the product (1+x+x^{2}+....+x^{2n})(1-x+x^{2}-x^{3}+....+x^{2m}) is 61, then n is equal to _________.
Option: 1 30
Option: 260
Option: 315
Option: 4 45
 

\text { Let } (1+x+x^{2}+....+x^{2n})(1-x+x^{2}-x^{3}+....+x^{2n})=a_{0}+a_{1} x+a_{2} x^{2}+\ldots \ldots

\\Put \,\, x=1 \\ (2 n+1).1 =a_{0} + a_{1} + a_{2}+ \ldots \ldots \\ Put\, x =-1 \\ 1.(2 n+1)= a_{0} - a_{1} + a_{2}+\ldots \ldots \\ From (i)+(ii) \\ 4 n+2 =2 (a_{0}+a_{2}+\ldots ) \\ So,\,\, 2 n+1=61 \\ \Rightarrow n=30

View Full Answer(1)
Posted by

Kuldeep Maurya

Let \alpha and \beta be two real roots of the equation (k+1)\tan ^{2}x-\sqrt{2}\cdot\lambda \tan x=(1-k), where, k(\neq-1 ) and \lambda are real numbers. If \tan^2 (\alpha +\beta )=50, then a value of \lambda is :
Option: 1 5\sqrt{2}  
Option: 2 10\sqrt{2}  
Option: 3 10  
Option: 4 5  
 

As we have learnt,

Sum of roots:

\\\mathrm{\alpha + \beta =\frac{-b}{a}}

Product of roots:

 \alpha \cdot \beta = \frac{c}{a}

Trigonometric Ratio for Compound Angles (Part 2)


\\\mathrm{\tan (\alpha+\beta)=\frac{\tan \alpha+\tan \beta}{1-\tan \alpha \tan \beta}}\\\\\mathrm{\tan (\alpha-\beta)=\frac{\tan \alpha-\tan \beta}{1+\tan \alpha \tan \beta}}

 

 

Now,

\\\tan \alpha + \tan{\beta } = \frac{\sqrt{2} \lambda}{1+k}\\\\\tan \alpha \times \tan{\beta } = \frac{k-1}{1+k} 

Since \tan \alpha \& \tan \beta are the roots of the given equation

\tan(\alpha + \beta) = \frac{\tan \alpha + \tan{\beta }}{1-\tan{\alpha }\tan{\beta }} = \frac{\frac{\sqrt{2}\lambda }{1+k}}{1- \frac{k-1}{k+1}} =\frac{\lambda}{\sqrt2}

Now,

\\ {\tan ^{2}(\alpha+\beta)=\frac{\lambda^{2}}{2}=50} \\ {\lambda=10}

 

View Full Answer(1)
Posted by

Kuldeep Maurya

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE

filter_img