Get Answers to all your Questions

header-bg qa
Filter By

All Questions

If \frac{\mathrm{d} y}{\mathrm{d} x}=\frac{xy}{x^{2}+y^{2}};y(1)=1; then a value of x satisfying y(x)=e is :   
Option: 1 \sqrt{3}\: e
 
Option: 2 \frac{1}{2}\sqrt{3}\: e
 
Option: 3 \sqrt{2}\: e
 
Option: 4 \frac{e}{\sqrt{2}}
 
 

√3e

View Full Answer(4)
Posted by

Nalla mahalakshmi

If z be a complex number satisfying \left | Re\left ( z \right ) \right |+\left | Im(z) \right |=4, then \left | z \right | cannot be : 
Option: 1 \sqrt{7}
 
Option: 2 \sqrt{\frac{17}{2}}
 
Option: 3 \sqrt{10}
 
Option: 4 \sqrt{8}
 
 

Option d

 

View Full Answer(3)
Posted by

Shravani.D.K

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads

Let a,b\epsilon \textbf{R},a\neq 0 be such that the equation, ax^{2}-2bx+5=0 has a repeated root \alpha, which is also a root of the equation, x^{2}-2bx-10=0. If \beta is the other root of this equation, then \alpha ^{2}+\beta ^{2} is equal to:
Option: 1 24
Option: 2 25
Option: 3 26
Option: 4 28
 

 

 

Nature of Roots -

Let the quadratic equation is ax2 + bx + c = 0

D is the discriminant of the equation.

iii) if roots D = 0, then roots will be real and equal, then


\\\mathrm{x_1=x_2 = \frac{-b}{2a} } \\\mathrm{Then, \;\; ax^2+bx +c =a(x-x_1)^2 }

-

ax2 – 2bx + 5 = 0 having equal roots or D=0 and \alpha=\frac{b}{a}

(2b)^2=4\times5\times a\;\;\Rightarrow \;\;b^2=5a

Put \alpha=\frac{b}{a} in the second equation

{x^{2}-2 b x-10=0} \\ {\Rightarrow b^{2}-2 a b^{2}-10 a^{2}=0}

\\\Rightarrow 5 a-10 a^{2}-10 a^{2}=0 \\ \Rightarrow 20 a^{2}=5 a \\ \Rightarrow a=\frac{1}{4} \text { and } \mathrm{b}^{2}=\frac{5}{4} \\ \alpha^{2}= 20 \text { and } \beta^{2}=5 \\ \alpha^{2}+\beta^{2} \\ =5+20 \\ =25

Correct Option 2

View Full Answer(1)
Posted by

avinash.dongre

The  number of real roots of the equation,  e^{4x}+e^{3x}-4e^{2x}+e^{x}+1=0  is :   
Option: 1 3
Option: 2 4
Option: 3 1
Option: 4 2
 

 

 

Transcendental function -

Transcendental functions:  the functions which are not algebraic are called transcendental functions. Exponential, logarithmic, trigonometric and inverse trigonometric functions are transcendental functions.

Exponential Function: function f(x) such that \mathrm{f(x)=a^x} is known as an exponential function.

\\\mathrm{base:\;\;a>0,a\neq1}\\\mathrm{domain:x\in \mathbb{R}}\\\mathrm{range:f(x)>0}

 

 

Logarithmic function:  function f(x) such that f\left ( x \right )= \log\: _{a}x is called logarithmic function 

\\\mathrm{base:\;\;a>0,a\neq1}\\\mathrm{domain:x>0}\\\mathrm{range:f(x)\in\mathbb{R}}
         

                    If a > 1                                                                               If a < 1

Properties of Logarithmic Function

\\\mathrm1.\;{\log_e(ab)=\log_ea+\log_eb}\\\mathrm{2.\;\log_e\left ( \frac{a}{b} \right )=\log_ea-\log_e b}\\\mathrm{3.\;\log_ea^m=m\log_ea}\\\mathrm{4.\;\log_aa=1}\\\mathrm{5.\;\log_{b^m}a=\frac{1}{m}\log_ba}\\\mathrm{6.\;\log_ba=\frac{1}{\log_ab}}\\\mathrm{7.\;\log_ba=\frac{\log_ma}{\log_mb}}\\\mathrm{8.\;a^{\log_am}=m}\\\mathrm{9.\;a^{\log_cb}=b^{\log_ca}}\\\mathrm{10.\;\log_ma=b\Rightarrow a=m^b}

-

 

 

 

Quadratic Equation -

The root of the quadratic equation is given by the formula:

 

\\\mathrm{x = \frac{-b \pm \sqrt{D}}{2a}}\\\\\mathrm{or} \\\mathrm{x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}}

 Where D is called the discriminant of the quadratic equation, given by D = b^2 - 4ac ,

 

-

 

Let e^{x}=t \in(0, \infty)

Now the equation 

\begin{array}{l}{t^{4}+t^{3}-4 t^{2}+t+1=0} \\ {t^{2}+t-4+\frac{1}{t}+\frac{1}{t^{2}}=0} \\ {\left(t^{2}+\frac{1}{t^{2}}\right)+\left(t+\frac{1}{t}\right)-4=0}\end{array}

Let \mathrm{t}+\frac{1}{\mathrm{t}}=\alpha

\begin{array}{l}{\left(\alpha^{2}-2\right)+\alpha-4=0} \\ {\alpha^{2}+\alpha-6=0} \\ {\alpha^{2}+\alpha-6=0}\end{array}

\alpha=-3,2

Only positive value possible so \alpha=2 \Rightarrow \quad \mathrm{e}^{x}+\mathrm{e}^{-\mathrm{x}}=2

x=0 is the only solution.

View Full Answer(1)
Posted by

avinash.dongre

Crack NEET with "AI Coach"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
neet_ads

At 300 K and 1 atm, 15 mL of a gaseous hydrocarbon requires 375 mL air containing 20% O2 by volume for complete combustion.  After combustion, the gases occupy 330 mL.  Assuming that the water formed is in liquid form and the volumes were measured at the same temperature and pressure, the formula of the hydrocarbon is :
Option: 1  C4H8  
Option: 2  C4H10
Option: 3  C3H6
Option: 4  C3H8
 

Volume of N in air = 375 × 0.8 = 300 ml

Volume of O2 in air = 375 × 0.2 = 75 ml
 

C_{x}H_{y} +\left ( x +\frac{y}{4} \right )O_{2} \; \rightarrow \; xCO_{2}(g) + \frac{y}{2} H_{2}O(l)

15ml                15\left ( x +\frac{y}{4} \right )

  0                         0                            15x                 -

 

After combustion total volume

330 =V_{N_{2}} + V_{CO_{2}}

330 = 300 + 15x 

x = 2 

Volume of O2 used

15\left ( x +\frac{y}{4} \right ) = 75

\left ( x +\frac{y}{4} \right ) = 5

y = 12 

So hydrocarbon is = C2H12

None of the options matches it therefore it is a BONUS.

----------------------------------------------------------------------

Alternatively  Solution


 C_{x}H_{y} +\left ( x +\frac{y}{4} \right )O_{2} \; \rightarrow \; xCO_{2}(g) + \frac{y}{2} H_{2}O(l)

15ml              15\left ( x +\frac{y}{4} \right )

  0                         0                            15x                 -

Volume of O2 used

15\left ( x +\frac{y}{4} \right ) = 75

\left ( x +\frac{y}{4} \right ) = 5

If further information (i.e., 330 ml) is neglected, option (C3H8 ) only satisfy the above equation.

View Full Answer(1)
Posted by

Ritika Jonwal

 An ideal gas undergoes a quasi static, reversible process in which its molar heat capacity C remains constant.  If during  this process the relation of pressure P and volume V is given by PVn=constant,  then n is given by (Here CP and CV are molar specific heat at constant pressure and constant volume, respectively)
Option: 1  n=\frac{C_{p}}{C_{v}}


Option: 2  n=\frac{C-C_{p}}{C-C_{v}}


Option: 3 n=\frac{C_{p}-C}{C-C_{v}}

Option: 4  n=\frac{C-C_{v}}{C-C_{p}}
 

For a polytropic preocess

c=c_{v}+\frac{R}{1-n} \: or \: \frac{R}{1-n} = c-c_{v}

\Rightarrow 1-n=\frac{R}{c-c_{v}} \: or\: n=1-\frac{R}{c-c_{v}}

\Rightarrow n=\frac{c-\left ( c_{v}+R \right )}{c-c_{v}} = \frac{c-c_{p}}{c-c_{v}}

View Full Answer(1)
Posted by

Ritika Jonwal

Crack JEE Main with "AI Coach"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
jee_ads

A point particle of mass m, moves along the uniformly rough track PQR as shown in the figure.  The coefficient of friction, between the particle and the rough track equals µ.  The particle is released, from rest, from the point P and it comes to rest at a point R.  The energies, lost by the ball, over the parts, PQ and QR, of the track, are equal to each other, and no energy is lost when particle changes direction from PQ to QR. The values of the coefficient of friction µ and the distance x(=QR), are, respectively close to :
Option: 1  0.2 and 6.5 m  
Option: 3  0.2 and 3.5 m  
Option: 4   0.29 and 6.5 m
 

Work done by friction at QR = μmgx

In triangle, sin 30° = 1/2 = 2/PQ

PQ = 4 m

Work done by friction at PQ = μmg × cos 30° × 4 = μmg × √3/2 × 4 = 2√3μmg

Since work done by friction on parts PQ and QR are equal,

μmgx = 2√3μmg

x = 2√3 ≅ 3.5 m

Applying work energy theorem from P to R

 

decrease in P.E.=P.E.= loss of energy due to friction in PQPQ and QR

\\ m g h=(\mu m g \cos \theta) P Q+\mu m g \times Q R\\ h=\mu \cos \theta \times P Q+\mu m g \times Q R\\ h=\mu \cos \theta \times P Q+\mu \times Q R =\mu \cos 30^{\circ} \times 4+\mu \times 2 \sqrt{3} =\mu\left(4 \times \frac{\sqrt{3}}{2}+2 \sqrt{3}\right)\\ h=\mu \times 4 \sqrt{3}\\ \mu=\frac{2}{4 \sqrt{3}}=\frac{1}{2 \sqrt{3}}=0.29where h=2(given)

View Full Answer(1)
Posted by

Ritika Jonwal

In the following structure, the double bonds are marked as I, II, III and IV Geometrical isomerism is not possible at site (s) :
Option: 1  III
Option: 2  I
Option: 3  I and II
Option: 4  III and IV  
 

Geometrical isomerism is not possible at Site I as two identical methyl groups are attached to the same carbon bearing the double bond.

Hence, the answer is Option (2)

View Full Answer(1)
Posted by

vishal kumar

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads

 Which one of the following is an oxide ?
Option: 1  KO2
Option: 2  BaO2
Option: 3  SiO2
Option: 4 CsO2  
 

SiO2  - oxide

KO???2? , CsO????2  -  superoxides

BaO????2 -  peroxide

View Full Answer(1)
Posted by

vishal kumar

 The following reaction occurs in the Blast Furnace where iron ore is reduced to iron metal : Fe2O3(s)+3 CO(g) 2 Fe(l)+3 CO2(g) Using the Le Chatelier’s principle, predict which one of the following will not disturb the equilibrium ?
Option: 1  Removal of CO
Option: 2  Removal of CO2
Option: 3 Addition of CO2
Option: 4 Addition of Fe2O3  
 

\\Fe_{2}O_{3}+3CO \leftrightharpoons 2Fe+3CO \\

According to Le Chatelier's principle change in concentration by changing the amount of reactant or product affect the equilibrium. However, the addition of solid reactant won't affect the concentration.

Therefore, addition of solid Fe2O???3 will not disturb the equilibrium. 

View Full Answer(1)
Posted by

vishal kumar

Crack NEET with "AI Coach"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
neet_ads
filter_img