Get Answers to all your Questions

header-bg qa

A block ' \mathrm{A}^{\prime} takes 2 \mathrm{~s} to slide down a frictionless incline of 30^{\circ} and length \mathrm{ ' l^{\prime}}, kept inside a lift going up with uniform velocity \mathrm{' v '. }If the incline is changed to 45^{\circ}, the time taken by the block, to slide down the incline, will be approximately :

Option: 1

2.66\: \mathrm{s}


Option: 2

0.83\: \mathrm{s}


Option: 3

1.68\: \mathrm{s}


Option: 4

0.70\: \mathrm{s}


Answers (1)

best_answer

For a lift moving with constant velocity there is no pseudo force acting on the block placed inside it due to lifts motion.

from the equation of motion ,

\mathrm{S=ut+\frac{1}{2}at^{2}}

\mathrm{-\ell=0+\frac{1}{2}\left ( -g\sin \Theta \right )t^{2}}

\mathrm{t=\sqrt{\frac{2\ell}{g\sin \Theta }}}

The above equation gives the time taken by block to slide down a frictionless incline of angle \mathrm{\Theta } with the horizontal and length \mathrm{\ell}

Case (1) for     \mathrm{\Theta =30\degree,t=2s}

\mathrm{t_{1}=2=\sqrt{\frac{2\ell}{g\sin 30\degree}}}

Case (2)

\mathrm{t_{2}=\sqrt{\frac{2\ell}{g\sin 45\degree}}}

\mathrm{\frac{t_{1}}{t_{2}}=\sqrt{\frac{\sin 45\degree}{\sin 30\degree}}=\sqrt{\frac{1/\sqrt{2}}{1/2}}}

\mathrm{\frac{2}{t_{2}}=2^{1/4}}

\mathrm{t_{2}=2^{3/4}s}

\mathrm{\therefore t_{2}=1.68\: s}

Hence 3 is correct option

Posted by

vishal kumar

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE