Get Answers to all your Questions

header-bg qa

A body is projected at an angle \alpha to the horizontal so as to clear two waves of equal height h at a distance 2 h from each other , the horizontal range of projectile is 

Option: 1

2h \cos (\alpha /2)


Option: 2

h/2 \sin^2 \alpha


Option: 3

2h \sin (2\alpha)


Option: 4

2h \cot (\alpha /2)


Answers (1)

best_answer

As we have learned

Horizontal Range -

Horizontal distance travelled by projectile from the point of projectile to the point on ground where its hits.

R=\frac{u^{2}\sin 2\Theta }{g}

 

 

 

- wherein

Special case of horizontal range

For man horizontal range.

\Theta = 45^{0}

R_{max}=\frac{u^{2}\sin 2 (45) }{g}=\frac{u^{2}\times 1}{g}=\frac{u^{2}}{g}

 

 

 

Pm and Qn are two waves , just clear by projectile 

  y = x \tan \alpha - \frac{gx^2 }{2u^2\cos ^2 \alpha } .........(1)

 

y coordinate of points P and Q must satisfy equation (1)   i.e 

h= x \tan \alpha - \frac{gx^2}{2u^2 \cos ^{2}\alpha } \; \; or \; \; gx^2-2u^2x\sin \alpha \cos \alpha + 2h u^2\cos ^2 \alpha = 0

Let x1 and x2  be coordinates of points p and q the x1 and x2 are the roots of quadratic equation (2) 

\Rightarrow x_1 + x_2= \frac{2u^2 \sin \alpha \cos \alpha }{g}.....(3)

and   

\Rightarrow x_1 x_2= \frac{2hu^2 \cos^2 \alpha }{g}.....(4)

Let R be the  range  of  porjectile 

i.e   OB= R .From the symmetry of the path about axis of parabola , we have 

OB = ON+NB= x1 +x2 

R = \frac{2u^2 \sin \alpha \cos \alpha }{g}.....(5)

Distance between the wave = 2h = x_2-x_1

(x_2-x_1)^2= (x_2+x_1)^2- 4x_1x_2

\Rightarrow 4h^2= R^2 - \frac{8hu^2\cos ^{2}\alpha }{g} ....(6)

R^2 -4hR \cot \alpha -4h^2= 0 (from \; \; 5\; \; and \; \; 6 )

\Rightarrow R = \frac{4h \cot \alpha \pm \sqrt{16h^2 \cot^2 \alpha+16 h^2}}{2}

\Rightarrow R = \frac{4h \cot \alpha +4h \csc \alpha }{2}=

2h (\cot \alpha + \csc \alpha )= 2h\left ( \frac{1+\cos \alpha }{\sin \alpha } \right )

R= 2h \cot \alpha /2

 

 

 

 

 

 

 

 

 

Posted by

HARSH KANKARIA

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE