Get Answers to all your Questions

header-bg qa

A cell supplies a current I_1 through a coil of resistance R_1, a current I_2 through a coil of resistance R_2. The emf of the cell is

Option: 1

I_1 I_2 \frac{\left(\mathrm{R}_2+\mathrm{R}_1\right)}{I_1+I_2}


Option: 2

\frac{I_1 I_2\left(\mathrm{R}_2-\mathrm{R}_1\right)}{I_1-I_2}


Option: 3

\frac{I_2\left(R_2-R_1\right)}{I_1-I_2}


Option: 4

\frac{I_1 R_2-I_2 R_1}{R_1-R_2}


Answers (1)

best_answer

\begin{aligned} & \frac{E}{R_1+r}=I_1 ; \frac{E}{R_2+r}=I_2 \\ & E=I_1 R_1+I_1r=I_2 R_2+I_2 r \end{aligned}

\frac{E-I_1 R_1}{I_1}=r=\frac{E-I_2 R_2}{I_1-I_2}

\text { Solve for } E=\frac{I_1 I_2\left(R_2-R_1\right)}{I_1-I_2}

 

Posted by

Sanket Gandhi

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE