Get Answers to all your Questions

header-bg qa

A circle is inscribed (i.e. touches all four sides ) into a rhombous ABCD  with one angle 60^{0}. The distance from the centre of the circle to the nearest vertex is equal to 1 . If P is any point of the circle, then  \left | PA \right |^{2}+\left | PB \right |^{2}+\left | PC \right |^{2}+\left | PD \right |^{2} is equal to:

Option: 1

0.12


Option: 2

11


Option: 3

10


Option: 4

13


Answers (1)

best_answer

 

Distance formula -

The distance between the point A\left ( x_{1},y_{1} \right )\: and \: B\left ( x_{2},y_{2} \right )

is \sqrt{\left ( x_{1} -x_{2}\right )^{2}+\left ( y_{1} -y_{2}\right )^{2}}

- wherein

 

 

Parametric form -

x= r\cos \Theta

y= r\sin \Theta

- wherein

Circle with centre \left ( O,O \right ) and radius r.

 

 

\because \:\:\tan 60^{0}=\frac{OA}{1}=\sqrt{3}

\because \:\:A(\sqrt{3,0})\:\:\:and\:\:\:C(-\sqrt{3},0)

\because \:\:\sin60^{0}=\frac{r}{1}=\frac{\sqrt{3}}{2}

Let coordinates of any point P on the circle be P \equiv (r\cos\theta,r\sin\theta)

\therefore PA^{2}=(\sqrt{3}-r \cos \theta)^{2}+(r \sin \theta)^{2}

PB^{2}=(r \cos \theta)^{2}+(1-r \sin \theta)^{2}

PC^{2}=(r \cos \theta+\sqrt{3})^{2}+(r \sin \theta)^{2}

and   PD^{2}=(r \cos \theta)^{2}+(r \sin \theta+1)^{2}

\therefore PA^{2}+PB^{2}+PC^{2}+PD^{2}=4r^{2}+8=11

\because r=\sqrt{3}/2

Posted by

manish painkra

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE