Get Answers to all your Questions

header-bg qa

A coil has resistance 30 \Omega and inductive reactance 20 \Omega at 50 Hz frequency. If an ac source of 200 V, 100 Hz is connected across the coil, the current in the coil will be:

Option: 1

4.0 A


Option: 2

8.0 A


Option: 3

\frac{20}{\sqrt{13}} \mathrm{~A}


Option: 4

2.0 A


Answers (1)

best_answer

Here,\mathrm{ \mathrm{R}=30 \Omega, \mathrm{X}_{\mathrm{L}}=20 \Omega, \mathrm{v}=50 \mathrm{~Hz} }
\mathrm{\mathrm{X}_{\mathrm{L}}=\omega \mathrm{L}=2 \pi v \mathrm{~L} \text { or } 20=2 \pi \times 50 \times \mathrm{L} }
When \mathrm{v^{\prime}=100 \mathrm{~Hz} }, then
\mathrm{\begin{aligned} & \mathrm{X}_{\mathrm{L}}^{\prime}=2 \pi \times 100 \times \mathrm{L}=2(2 \pi \times 50 \mathrm{~L}) \\ & =2 \times 20=40 \Omega \quad \text { (Using (i)) } \\ & \text { Current in the coil is } \mathrm{I}_{\mathrm{rms}}=\frac{\mathrm{V}_{\mathrm{rms}}}{\sqrt{\mathrm{R}^2+\mathrm{X}_{\mathrm{L}}^{\prime 2}}}=\frac{200}{\sqrt{30^2+40^2}}=4 \mathrm{~A} \end{aligned} }

Posted by

Ritika Jonwal

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE