Get Answers to all your Questions

header-bg qa

A cyclotron is used to accelerate protons. If the operating magnetic field is 1.0 \mathrm{~T} and the radius of the cyclotron 'dees' is 60 \mathrm{~cm}, the kinetic energy of the accelerated protons in \mathrm{MeV} will be :
[ use \mathrm{m}_{\mathrm{p}}=1.6 \times 10^{-27} \mathrm{~kg}, \mathrm{e}=1.6 \times 10^{-19} \mathrm{C} ]

Option: 1

12


Option: 2

18


Option: 3

16


Option: 4

32


Answers (1)

best_answer

\mathrm{B=1T}

\mathrm{r=60 cm}

\mathrm{r=\frac{mv}{qB}}

\mathrm{P=mv=qBr}

Kinetic energy of the accelerated protons is

\mathrm{K E =\frac{p^2}{2 m}=\frac{q^2 B^2 r^2}{2 m} }

        \mathrm{=\frac{(\left.1.6 \times 10^{-19}\right)^2 \times(1)^2 \times(0.36)}{2 \times 1.6 \times 10^{-27}} }

        \mathrm{=\frac{1.6 \times 0.36 \times 10^{-38}}{2 \times 10^{-27}} }

\mathrm{K E =\frac{1.6 \times 0.18 \times 10^{-11} }{1.6 \times 10^{-13}}MeV }

\mathrm{K E =18 \mathrm{MeV}}

Hence 2 is correct option







\end{aligned}

Posted by

Info Expert 30

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE