Get Answers to all your Questions

header-bg qa

A flask is filled with equal moles of \mathrm{A~and ~B}. The half lives of \mathrm{A ~and ~B ~are ~100 \mathrm{~s} ~and ~50 \mathrm{~s}} respectively and are independent of the initial concentration. The time required for the concentration of \mathrm{A} to be four times that of \mathrm{B} is ______\mathrm{s} .

(Given : \ln 2=0.693 )

Option: 1

200


Option: 2

-


Option: 3

-


Option: 4

-


Answers (1)

best_answer

Given , half Life of A, \mathrm{\left(t_{\frac{1}{2}}\right)_{A}=100\, \mathrm{sec}}
half life of B , \mathrm{\left(t_{\frac{1}{2}}\right)_{B}=50\, \mathrm{sec}}

Since, initial concentration is independent of half life signifies that Reaction is of first order.

   \mathrm{\therefore\; \text{for first order Reaction,}\; t_{\frac{1}{2}}=\frac{\ln 2}{k} }.
         \mathrm{K_{A}=\frac{\ln 2 }{100},\; K_{B}=\frac{\ln 2}{50}}

For Ist order  \mathrm{R\alpha ^{n}\rightarrow A= A_{0}\, e^{-kt}}

\mathrm{For \: A \rightarrow A_{t}=A_{0} \; e^{\left(-\frac{\ln 2}{100} t\right)}}
\mathrm{For \; B \rightarrow B_{t}=B_{0} \; e^{\left(-\frac{\ln 2}{50} t\right)}}

Since initial concentration of \mathrm{A} and \mathrm{B} are same.
\mathrm{\text { So } A_{0}=B_{0} \quad -{ (1) }}
and condition given is -
\mathrm{A_{t}= 4B_t \; \quad -(2)}

Putting Both equation (1), (2) we get -

\mathrm{e^{-\frac{\ln 2}{100} t}=4 e^{-\frac{\ln 2}{50} t}

\mathrm{\Rightarrow e^{\left(\frac{\ln 2}{100}\right) t}=4}

\mathrm{\Rightarrow \frac{\ln 2}{100} \times t=\ln 4 }

\mathrm{ \Rightarrow \frac{\ln 2}{100} \times t=2 \, \mathrm{ln}\, 2}

\mathrm{\Rightarrow t= 200\, sec.}

Hence,  answer is 200.

Posted by

avinash.dongre

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE