Get Answers to all your Questions

header-bg qa

 A gaseous reaction, \mathrm{A}_2(\mathrm{~g})+\mathrm{B}_2(\mathrm{~g}) \rightarrow 1 / 2 \mathrm{C}_2(\mathrm{~g}), shows increase in pressure from 100 mm to 140 mm in 10 minutes. The rate of disappearance of \mathrm{A_2}  is
 

Option: 1

4 mm min–1


Option: 2

8 mm min–1


Option: 3

16 mm min–1


Option: 4

2 mm min–1


Answers (1)

best_answer

Given initial pressure 100 mm and final pressure 140 mm.

 

\mathrm{A_2(g)+B_2(g)\rightarrow 1/2\: C_2(g)}

t = 0

100 mm

          

t = 10 min

(100 – x) mm

x

x/2

\text { At } \mathrm{t}=10 \mathrm{~min} \text {, Pressure }=100-\mathrm{x}+\mathrm{x}+\mathrm{x} / 2=140 \mathrm{~mm} \text { (given) }

\begin{aligned} & \Rightarrow x / 2=40 \mathrm{~mm} \\ & \Rightarrow x=80 \mathrm{~mm} \end{aligned}

Now, the rate of disappearance of A_2 is \frac{d[A]}{d t}=\frac{80 \mathrm{~mm}}{10 \mathrm{~min}}=8 \mathrm{~mm} \mathrm{~min}^{-1}

Posted by

Ritika Kankaria

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE