Get Answers to all your Questions

header-bg qa

A light beam is described by E = 800 \sin \omega \left ( t-\frac{x}{c} \right ). An electron is allowed to move normal to the propagation of light beam with a speed of 3\times 10^{7}\: ms^{-1},what is the maximum magnetic force exerted on the electron ?
Option: 1 1\cdot 28\times 10^{-21}\: N
Option: 2 12\cdot 8\times 10^{-18}\: N
Option: 3 1\cdot 28\times 10^{-18}\: N
Option: 4 12\cdot 8\times 10^{-17}\: N

Answers (1)

best_answer

E= 800\: \: \sin \omega\left ( t-\frac{x}{c} \right )
\frac{E_{0}}{B_{0}}= c
{B_{0}}= \frac{E_{0}}{c}= \frac{800}{3\times10^{8}}= \frac{800}{3}\times10^{-8}
Max. force due to the magnetic field
F= qvB_{0}\sin 90\degree= 1\cdot 6\times10^{-19}\times3\times 10^{-7}\times\frac{800}{3}\times10^{-8}
                                   = 1\cdot 280\times 10^{-20}
                         \Rightarrow F= 12\cdot 80\times 10^{-19}\: N
The correct option is (2)
 

Posted by

vishal kumar

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE