Get Answers to all your Questions

header-bg qa

A metal exposed to light of wavelength 800 \mathrm{~nm} and and emits photoelectrons with a certain kinetic energy. The maximum kinetic energy of photo-electron doubles when light of wavelength 500 \mathrm{~nm} is used. The workfunction of the metal is : (Take \mathrm{h c=1230 \mathrm{eV}-\mathrm{nm}} ).
 

Option: 1

1.537 \mathrm{eV}


Option: 2

2.46 \mathrm{eV}


Option: 3

0.615 \mathrm{eV}


Option: 4

1.23 \mathrm{eV}


Answers (1)

best_answer

\mathrm{\lambda =800\: nm}

\mathrm{E\left ( eV \right )=\frac{hc}{\lambda }}

          \mathrm{\lambda =\frac{1230}{E}nm}

\mathrm{E_{1}=\frac{1230}{\lambda _{1}}=\frac{1230}{800}eV}\rightarrow (1)

\mathrm{E_{2}=\frac{1230}{\lambda _{2}}=\frac{1230}{500}eV}\rightarrow (2)

From Einstein's photoelectric equation,

\mathrm{E=\phi_0+\left(k E_{\max }\right)}

Let,

\mathrm{\left(K E_{\text {max }}\right)_1=K_0}

\mathrm{E_1=\phi_0+k_0 \rightarrow \text { (3) }}

\mathrm{E_2=\phi_0+2k_0 \rightarrow \text { (4) }(Given)}

2\times (3)-(4)

\mathrm{2E_{1}-E_{2}=\phi _{0}}

\mathrm{\frac{1230}{400}-\frac{1230}{500}=\phi_0}

\mathrm{\phi_0=\frac{1230}{2000}=\frac{123}{200} }

Work Function \mathrm{=\phi _{0}=0.615eV}

The work function of thermal is \mathrm{0.615\: eV}

Hence (3) is correct option

 

 






 

Posted by

avinash.dongre

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE