Get Answers to all your Questions

header-bg qa

A nucleus of mass \mathrm{M} at rest splits into two parts having masses \mathrm{\frac{M^{\prime}}{3}} and \mathrm{\frac{2 M^{\prime}}{3}\left(M^{\prime}<M\right).} The ratio of de Broglie wavelength of two parts will be :

Option: 1

1: 2


Option: 2

2: 1


Option: 3

1: 1


Option: 4

2: 3


Answers (1)

best_answer

\mathrm{M(o)=\frac{M'}{3}\times V_{1}+\frac{2M'}{3}\times V_{2}}

\mathrm{\frac{V_1}{V_2}=2}

De-broglie wavelength \mathrm{=\frac{h}{m v}}

\mathrm{\frac{\lambda_1}{\lambda_2}=\frac{2 M^{\prime} / 3 \times V_2}{\frac{M^{\prime} }{3}\times V_{1}}=\frac{2}{2}}

\mathrm{=1}

Hence (3) is correct option.

Posted by

Shailly goel

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE