Get Answers to all your Questions

header-bg qa

A radioactive sample has an average life of 30 ms and is decaying. A capacitor of capacitance 200 \mu F is first charged and later connected with resistor 'R'. If the ratio of charge on capacitor to the activity of radioactive sample is fixed with respect to time then the value of 'R' should be ______\Omega.
 

Answers (1)

best_answer

\begin{gathered} t_{\text {mean }}=30 \times 10^{-3} \mathrm{~S}=\frac{1}{\lambda} \\ C=200 \mu \mathrm{F} \end{gathered}

Let q_{0} be the initial change on the capacitor

\rightarrow q= q_{0}e^{-t/\tau }

Discharging of capacitor condition.

Activity after time  t

A_{t}=A_{0} e^{-\lambda t}

\begin{aligned} &\frac{q_{t}}{A_{t}}=\frac{q_{0}}{A_{0}} \frac{e^{-t / \tau}}{e^{-\lambda t}} \\ &\frac{q_{t}}{A_{t}}=\frac{q_{0}}{A_{0}} e^{(-t / \tau+\lambda t)}=K \end{aligned}

\begin{aligned} \therefore-\frac{t}{\tau} &+\lambda t=0 \\ \frac{1}{\tau} &=\lambda \\ \frac{1}{R C} &=\lambda \end{aligned}

\begin{aligned} t_{\text {mean }}=\frac{1}{\lambda} &=R C \\ \end{aligned}

\begin{aligned} 30 \times 10^{-3}=R \times 200 \times 10^{-6} \\ \end{aligned}

\begin{aligned} R &=\frac{30}{200} \times 10^{+3} \\ \\R &=150 \Omega \end{aligned}

Posted by

vishal kumar

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE