Get Answers to all your Questions

header-bg qa

A ray of light coming from the general eqn of the pt \left ( 1,2\sqrt{3} \right ) is incident at an angle  30^{\circ} on the line x=1 at point A. The ray gets reflected on the line x=1 and meets x-axis at pt.B Then the line AB pass via ...
Option: 1 \left ( 4,-\sqrt{3} \right )
Option: 2 \left ( 3,-\sqrt{3} \right )
Option: 3 \left ( 3,-1/\sqrt{3} \right )
Option: 4 \left ( 4,-\sqrt{3}/2 \right )

Answers (1)

best_answer

\\\tan 60^{\circ}=\frac{2 \sqrt{3}-\mathrm{k}}{2-1} \\ \\\sqrt{3}=2 \sqrt{3}-\mathrm{k} \\ \\\therefore \mathrm{k}=\sqrt{3}

\begin{aligned} &\text { So point } \mathrm{A}(1, \sqrt{3})\\ &\text { Now slope of line } \mathrm{AB} \text { in } \mathrm{m}_{\mathrm{AB}}=\tan 120^{\circ} \end{aligned}

\begin{aligned} &\mathrm{mm}_{\mathrm{AB}}=-\sqrt{3}\\ &\text {Now equation of line } \mathrm{AB} \text { is } \end{aligned}

\begin{aligned} &y-\sqrt{3}=-\sqrt{3}(x-1)\\ &\sqrt{3} x+y=2 \sqrt{3}\\ &\text {Now satisfy options } \end{aligned}

\left ( 3,-\sqrt{3} \right )

Correct Answer: Option B

Posted by

himanshu.meshram

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE