Get Answers to all your Questions

header-bg qa

A sample of an ideal diatomic gas is initially at a temperature of 500 K and a volume of 4 liters. The gas undergoes an isochoric process, during which it absorbs 1800 J of heat. If the final temperature of the gas is 700 K, calculate the heat capacity at constant volume \mathrm{(C_{v})} for this gas.

Given: Initial temperature \mathrm{(T_{1})} = 500 K
Initial volume \mathrm{(V_{1})} = 4 liters
Heatabsorbed (Q) = 1800 J
Final temperature \mathrm{(T_{2})} = 700 K
The gas is ideal and diatomic.

Option: 1

8 J/K


Option: 2

9 J/K
 


Option: 3

10 J/K


Option: 4

12 J/K


Answers (1)

best_answer

Step 1: Calculate the change in temperature \mathrm{(\Delta T)}:

          \mathrm{\Delta T=T_2-T_1=700 \mathrm{~K}-500 \mathrm{~K}=200 \mathrm{~K}}

Step 2: Calculate the heat capacity at constant volume \mathrm{(C_v)}:

The heat capacity at constant volume \mathrm{(C_v)} is calculated using the formula:

                   \mathrm{C_v=\frac{Q}{\Delta T}}

Substitute the given values:

                   \mathrm{Q=1800 J, \quad \Delta T=200 \mathrm{~K}}

Calculating the value of \mathrm{C_{v}}:

                     \mathrm{C_v=\frac{1800 \mathrm{~J}}{200 \mathrm{~K}}=9 \mathrm{~J} / \mathrm{K}}

Answer: The heat capacity at constant volume \mathrm{(C_{v})} for the given diatomic ideal gas is approximately 9 J/K.

Option (2) is correct

Posted by

jitender.kumar

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE