Get Answers to all your Questions

header-bg qa

A sealed flask with a capacity of 2 \mathrm{dm}^{3} contains \mathrm{11 \mathrm{~g}} of propane gas. The flask is so weak that it will burst if the pressure becomes \mathrm{2 \mathrm{MPa}}. The minimum temperature at which the flask will burst is _______________ \mathrm{{ }^{\circ} \mathrm{C}.} [Nearest integer]

\text { (Given: } \mathrm{R}=8.3 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \text {, Atomic masses of } \mathrm{C} \text { and } \mathrm{H} \text { are } 12 \mathrm{u} \text { and } 1 \mathrm{u},\text { respectively.) } (Assume that propane behaves as an ideal gas.) 

Option: 1

1655


Option: 2

-


Option: 3

-


Option: 4

-


Answers (1)

best_answer

We know, \mathrm{P Y=n R T}

\mathrm{P=2 \; \mathrm{MPa}, V=2 d m^3=2 \times 10^{-3} \mathrm{~m}^3}

\mathrm{n=\frac{11}{44}=\frac{1}{4} \text { mol of Propane } \mathrm{C}_3 \mathrm{H}_8}

Hence,

\mathrm{2 \times 10^6(\mathrm{~Pa}) \times 2 \times 10^{-3}\left(\mathrm{~m}^3\right)=\frac{1}{4}\; \text{mol} \times 8.3 \mathrm{JK}^{-1} \mathrm{~mol}^{-1} \times T}

                                                 4 \times 10^{3}=\frac{1}{4}\times 8.3\times \text{T}

                                                \text{T}=\frac{16000}{8.3} \text{K}\; \; \; \; \; \; \; \left [ \because 1 \text{Pam}^{3}=1 \text{J}\right ]

                                                \text{T}=1927.71 \text{ K}

                                                \text{T}=1654.56^{\circ } \text{ C}

                                                 \text{T}=1655^{\circ } \text{ C}

Answer = 1655  

Posted by

Info Expert 30

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE