Get Answers to all your Questions

header-bg qa

A secant OPQ is drawn through the centre \mathrm{O(0,0)} of two concentric circles of radii a and \mathrm{b(a<b)} to meet the circles in P and Q. Lines through P parallel to y-axis and through Q parallel to x-axis meet at the point R. Then the locus of R is an ellipse touching both the circle, if the foci of this ellipse lie on the inner circle then its eccentricity is

Option: 1

1 / 2


Option: 2

1 / \sqrt{3}


Option: 3

1 / \sqrt{2}


Option: 4

\frac{1}{2 \sqrt{2}}


Answers (1)

best_answer

\mathrm{x^2+y^2=a^2} inner               ....(1)

\mathrm{x^2+y^2=b^2} outer             ....(2)

\mathrm{\therefore \quad P\, \, is \, \, (a \cos \theta, a \sin \theta)}

\mathrm{Q\, \, is \, \, (b \cos \theta, b \sin \theta)}

\therefore \quad The point R has x of P and y of Q

\mathrm{\therefore \quad R \, \, is \, \, x=a \cos \theta, y=b \sin \theta}

\therefore  Locus of R is \mathrm{ \frac{x^2}{a^2}+\frac{y^2}{b^2}=1, a<b}

It is an ellipse whose foci lie on y-axis at \mathrm{(0, b e)} and \mathrm{(0,-b e)}

if the foci lie on inner circle \mathrm{x^2+y^2=a^2} then \mathrm{b^2 e^2=a^2} but

\mathrm{ a^2=b^2(1-e)^2}

or \mathrm{ b^2 e^2=b^2\left(1-e^2\right) }

\mathrm{\therefore 2 e^2=1 or e=1 / \sqrt{2}}

Posted by

manish painkra

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE