Get Answers to all your Questions

header-bg qa

A sinusoidal voltage \mathrm{V(t)=210\sin3000\: t\: volt} is applied to a series \mathrm{LCR} circuit in which \mathrm{L=10mH,C=25\mu F\: and\: R=100\Omega }. The phase difference \mathrm{\left ( \phi \right )}between the applied voltage and resultant current will be :

Option: 1

\mathrm{\tan^{-1}\left ( 0.17 \right )}


Option: 2

\mathrm{\tan^{-1}\left ( 9.46 \right )}


Option: 3

\mathrm{\tan^{-1}\left ( 0.30 \right )}


Option: 4

\mathrm{\tan^{-1}\left ( 13.33 \right )}


Answers (1)

\mathrm{V(t)=210 \sin (3000 t)} \\

\mathrm{L=10 \times 10^{-3} \mathrm{H}} \\

\mathrm{C=25 \times 10^{-6} \mathrm{~F}} \\

\mathrm{R=100 \Omega}

\mathrm{\tan \phi= \frac{\left|X_{L}-X_{C}\right|}{R}} \\

\mathrm{X_{L}=\omega L =2 \pi f L} \\

       \mathrm{=3000 \times 10 \times 10^{-3}} \\

\mathrm{X_{L} =30 \Omega}

\mathrm{X_{c}=\frac{1}{\omega c}=\frac{1}{3000 \times 25 \times 10^{-6}}} \\

\mathrm{X_{C}=\frac{40 \Omega}{3} }\\

\mathrm{\tan \phi=\frac{\left|30-\frac{40}{3}\right|}{100}=\frac{1}{6}} \\

\mathrm{\phi=\tan ^{-1}\left(\frac{1}{6}\right)=\tan ^{-1}(0.166)}

Hence the correct answer is option 1.

Posted by

Kshitij

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE