Get Answers to all your Questions

header-bg qa

A steel rail of length 5 m and area of cross section 40 cm2 is prevented from expanding along its length while the temperature rises by 100C.  If coefficient of linear expansion and Young’s modulus of steel are 1.2×10−5 K−1 and 2×1011 Nm−2 respectively, the force developed in the rail is approximately :
Option: 1 2×107 N
Option: 2  1×105 N
Option: 3  2×109 N
Option: 4  3×10−5 N  
 

Answers (1)

best_answer

\\ \text{Youngs modules} \ \mathrm{Y}=2 \times 10^{11} \mathrm{Nm}^{-2} \\ \text{linears expression coefficient} \alpha=1.2 \times 10^{-5} \mathrm{~K}^{-1} \\ 1=5 \mathrm{~cm} \quad \mathrm{~A}=40 \mathrm{~cm}^2 \\ \Delta \mathrm{T}=10^{\circ} \mathrm{C} \\ \Delta \mathrm{l}=\mathrm{l} \propto \Delta \mathrm{T} \\ \frac{\Delta \mathrm{l}}{\mathrm{l}}=\propto \Delta \mathrm{T} \left[\mathrm{F}=\mathrm{YA} \frac{\Delta \mathrm{l}}{\mathrm{l}}\right] \\ \mathrm{F}=\mathrm{YA} \propto \Delta \mathrm{T} \mathrm{F}=2 \times 10^{11} \mathrm{Nm}^{-2} \times \frac{40}{10} \\mathrm{~m} \times 1.25 \times 10^{-5} \times 10 =2 \times 40 \times 12 \times 10^2 =96 \times 10^3 =0.96 \times 10^3 F \cong 1 \times 10^5 \mathrm{~N}

Posted by

vishal kumar

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE