Get Answers to all your Questions

header-bg qa

A uniform magnetic field  \mathrm{\overrightarrow{B}=(3 \hat{i}+4 \hat{j}+\hat{k})}  exists in region of space. A semicircular wire of radius 1 m carrying current 1 A having its centre at (2,2,0) is placed in x-y plane as shown in fig. The force on semicircular wire will be

Option: 1

\mathrm{\sqrt{2}(\hat{i}+\hat{j}+\hat{k}) }


Option: 2

\mathrm{\sqrt{2}(\hat{i}-\hat{j}+\hat{k}) }


Option: 3

\mathrm{\sqrt({2} \hat{i}+\hat{j}-\hat{k}) }


Option: 4

\mathrm{\sqrt{2}(\hat{-} \dot{i}+\hat{j}+\hat{k})}


Answers (1)

best_answer

\mathrm{ \overrightarrow{B}=3 \hat{i}+4 \hat{j}+\hat{k} \\ }

\vec{l}=\frac{2}{\sqrt{2}}(\hat{i}+\hat{j})

\mathrm{ \overrightarrow{F}=I(\overrightarrow{l} \times \overrightarrow{B})=\sqrt{2}[(\hat{i}+\hat{j}) \times(3 \hat{i}+4 \hat{j}+\hat{k})]=\sqrt{2}(\hat{i}-\hat{j}+\hat{k}) }.

Posted by

Ritika Kankaria

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE