Get Answers to all your Questions

header-bg qa

A velocity selector consists of electric field \mathrm{\overrightarrow{E}=E \: \hat{k}} and magnetic field \mathrm{\overrightarrow{B}=B \: \hat{j}} with \mathrm{B=12\: \mathrm{mT}}. The value of \mathrm{E} required for an electron of energy \mathrm{ 728 \: \mathrm{eV}}moving along the positive \mathrm{ x-axis} to pass undeflected is :

\mathrm{ \text { (Given, mass of electron }=9.1 \times 10^{-31} \mathrm{~kg} \text { ) }}

Option: 1

\mathrm{192\: \mathrm{kVm}^{-1}}


Option: 2

\mathrm{192\: \mathrm{mVm}^{-1}}


Option: 3

\mathrm{9600\: \mathrm{kVm}^{-1}}


Option: 4

\mathrm{16 \: \mathrm{kVm}^{-1}}


Answers (1)

best_answer

\mathrm{\bar{E}=E(\hat{k})}

\mathrm{\bar{B}=B(\hat{j})}

\mathrm{B=12\: mT}

         

\mathrm{ K E=\frac{1}{2} m v^2=728 \mathrm{ev} \rightarrow(1 )}
For velocity selector,

\mathrm{\bar{F}_E=-\bar{F}_m}

\mathrm{q \bar{E}=-q(\bar{V} \times \bar{B})}

\mathrm{E=e(V B) \sin 90^{\circ}}

\mathrm{(\because q=-e)}

\mathrm{v=\frac{E}{B} \rightarrow (2)}

\mathrm{E=V B}

\mathrm{E=\left(\frac{728 \times 1.6 \times 10^{-19} \times 2}{9.1 \times 10^{-31}}\right)^{1 / 2} \times 12 \times 10^{-3}}

\mathrm{E=192 \: \mathrm{kVm}^{-1}}

Hence (1) is correct option

Posted by

Devendra Khairwa

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE