Get Answers to all your Questions

header-bg qa

A wire of length 20 m is to be cut into two pieces. A piece of length  l_1  is bent to make a square of area
A_1  and the other piece of length l_2  is made into a circle of area A_2 . If   2A1 + 3A2  is minimum then
(\pi l_1) : l_2 is equal to :

 

Option: 1

1:6


Option: 2

 6: 1


Option: 3

 3: 1 


Option: 4

 4: 1


Answers (1)

best_answer

Total length of wire = 20 m

area of square  (A_1)  =  \left(\frac{\ell_1}{4}\right)^2

area of circle (A_2)  =  \left(\frac{\ell_2}{2\pi}\right)^2  

Let S =  2A_1 + 3A_2

\mathrm{S}=\frac{\ell_1^2}{8}+\frac{3 \ell_2^2}{4 \pi}

\because \ell_1+\ell_2=20  then

\begin{aligned} & 1+\frac{\mathrm{d} \ell_2}{\mathrm{~d} \ell_1}=0 \\ & \frac{\mathrm{d} \ell_2}{\mathrm{~d} \ell_1}=-1 \end{aligned}

\begin{aligned} & \frac{\mathrm{ds}}{\mathrm{d} \ell_1}=\frac{\ell_1}{4}+\frac{6 \ell_2}{4 \pi} \cdot \frac{\mathrm{d} \ell_2}{\mathrm{~d} \ell_1}=0 \\ & =\frac{\ell_1}{4}=\frac{6 \ell_2}{4 \pi} \\ & =\frac{\pi \ell_1}{\ell_2}=\frac{6}{1} \end{aligned}

 

Posted by

Rishabh

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE