Get Answers to all your Questions

header-bg qa

A wire of length 22 \mathrm{~m} is to be cut into two pieces. One of the pieces is to be made into a square and the other into an equilateral triangle. Then, the length of the side of the equilateral triangle, so that the combined area of the square and the equilateral triangle is minimum, is :

Option: 1

\frac{22}{9+4 \sqrt{3}}


Option: 2

\frac{66}{9+4 \sqrt{3}}


Option: 3

\frac{22}{4+9 \sqrt{3}}


Option: 4

\frac{66}{4+9 \sqrt{3}}


Answers (1)

best_answer

Let the side of square be \mathrm{x} and side of triangle be \mathrm{z}

So  \mathrm{4 x+3 z=22} \\

\mathrm{\Rightarrow x=\frac{22-3 z}{4}}          ..........(i)

\text { combined area } \mathrm{A =x^{2}+\frac{\sqrt{3}}{4} z^{2}} \\

\mathrm{= \frac{1}{16}(22-3 z)^{2}+\frac{\sqrt{3}}{4} z^{2} }

\mathrm{\frac{d A}{d z}=0\: for\: max/min\: area}\\

\mathrm{\Rightarrow-\frac{3}{8}(22-3 z) +\frac{\sqrt{3}}{2} z=0} \\

\mathrm{\Rightarrow \quad \frac{\sqrt{3}}{2} z=\frac{3}{8}(22-3 z) }\\

\mathrm{\Rightarrow \quad 4 z=22 \sqrt{3}-3 \sqrt{3} z} \\

\mathrm{\Rightarrow \quad z=\frac{22 \sqrt{3}}{4+3 \sqrt{3}}=\frac{66}{4 \sqrt{3}+9} }

Hence the correct answer is option 2

Posted by

Pankaj

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE