Get Answers to all your Questions

header-bg qa

An object of mass 'm' is suspended at the end of a mass less wire of length L and area of cross-section A. Young's modules of the maternal of the wire is Y. if the mass is pulled down slightly its freq. of oscillation along the vertical direction is :
Option: 1 f=\frac{1}{2\pi }\sqrt{\frac{mA}{YL}}
Option: 2 f=\frac{1}{2\pi }\sqrt{\frac{YL}{mA}}
Option: 3 f=\frac{1}{2\pi }\sqrt{\frac{YA}{mL}}
Option: 4 f=\frac{1}{2\pi }\sqrt{\frac{mL}{YA}}

Answers (1)

best_answer

At equilibrium

T=mg ......(i)

Y=\frac{T / A}{l / L}$

\Rightarrow T=\frac{Y A l}{L} \ldots$(ii)

From
(i) and (ii)

m g=\frac{Y A l}{L} \ldots$ (iii)

Now for a small displacement x

\begin{aligned} &\text { Restoring force } &\left.=-\left[T^{\prime}-m g\right]=-\left[\frac{Y A(l+x)}{L}-\frac{Y A l}{L}\right] \right] &=\frac{-Y A x}{L} \end{aligned}Comparing with  F=-m \omega^{2} x

\begin{array}{l} m \omega^{2}=\frac{Y A}{L}\\ \Rightarrow \omega=\sqrt{\frac{Y A}{m L}} \Rightarrow \frac{2 \pi}{T}=\sqrt{\frac{Y A}{m L}} \\ \text { Frequency } =f=\frac{1}{T}=\frac{1}{2 \pi} \sqrt{\frac{Y A}{m L}} \end{array}

 

 

 

 

 

Posted by

Deependra Verma

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE