Get Answers to all your Questions

header-bg qa

 If \left ( 2+\sin x \right )\: \frac{dy}{dx}\: +\left ( y+1 \right )\cos x= 0

and y(0)=1,then  y\left ( \frac{\pi }{2} \right )   is equal to :

  • Option 1)

    -\frac{2}{3}

  • Option 2)

    -\frac{1}{3}

  • Option 3)

    \frac{4}{3}

  • Option 4)

    \frac{1}{3}

 

Answers (1)

best_answer

As we learnt in

Solution of Differential Equation -

\frac{\mathrm{d}y }{\mathrm{d} x} =f\left ( ax+by+c \right )

put

 Z =ax+by+c

 

 

- wherein

Equation with convert to

\int \frac{dz}{bf\left ( z \right )+a} =x+c

 

 

 

 \left ( 2+\sin x \right )\frac{dy}{dx}+\left ( y+1 \right )\cos x=0

=>\frac{dy}{dx}=-\left ( y+1 \right ).\frac{\cos x}{2+\sin x}

=>-\frac{dy}{y+1}=\frac{\cos x}{2+\sin x}dx  

\therefore -\int \frac{dy}{y+1}=\int \frac{\cos x}{2+\sin x}dx

=>-log(y+1)=log(2+\sin x)+C

=> put \: x=0,\: y=1

-log2=log(2+\sin x)+C=+log2+C

\therefore C=-2log2=log\frac{1}{4}

\therefore -log(y+1)=log(2+\sin x)+log\frac{1}{4}

Now put 

x=\frac{\pi }{2}

\therefore -log(y+1)=log(2+1)+log\frac{1}{4}=log\frac{3}{4}

\therefore y+1=\frac{4}{3}

=> y=\frac{1}{3}


Option 1)

-\frac{2}{3}

Incorrect option  

Option 2)

-\frac{1}{3}

Incorrect option  

Option 3)

\frac{4}{3}

Incorrect option  

Option 4)

\frac{1}{3}

Correct option

Posted by

Aadil

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE