Get Answers to all your Questions

header-bg qa

if \small 2x= y^{\frac{1}{5}}+y^{-\frac{1}{5}}  and \small \left ( x^{2}-1 \right )\frac{d^{2}y}{dx^{2}}+\lambda x\frac{dy}{dx} +ky=0 

then \small \lambda +k is equal to :

  • Option 1)

    -23

  • Option 2)

    -24

  • Option 3)

    26

  • Option 4)

    -26

 

Answers (1)

best_answer

As we learnt in 

Differential Equations -

An equation involving independent variable (x), dependent variable (y) and derivative of dependent variable with respect to independent variable 
\left (\frac{\mathrm{d} y}{\mathrm{d} x} \right )

- wherein

eg:

  \frac{d^{2}y}{dx^{2}}- 3\frac{dy}{dx}+5x=0

 

 2x=y^{\frac{1}{5}}+y^{-\frac{1}{5}}

=y^{\frac{1}{5}}+\frac{1}{y^{\frac{1}{5}}}

\therefore 2x=\frac{\left ( y^\frac{1}{5} \right )^{2}+1}{y^{\frac{1}{5}}}

\therefore \left ( y^{\frac{1}{5}} \right )^{2}-2.x.y^{\frac{1}{5}}+x^{2}=x^{2}-1

\therefore \left ( x-y^{\frac{1}{5}} \right )^{2}=x^{2}-1

x-y^{\frac{1}{5}}=\sqrt{x^{2}-1}

x-\sqrt{x^{2}-1}=y^{\frac{1}{5}}

\therefore y=\left ( x-\sqrt{x^{2}-1} \right )^{5}

\frac{dy}{dx}=5\left ( x-\sqrt{x^{2}-1} \right )^{4}\times \left ( 1-\frac{2x}{2\sqrt{x^{2}-1}} \right )

=5\left ( x-\sqrt{x^{2}-1} \right )^{4}\left ( \frac{\sqrt{x^{2}-1}-x}{\sqrt{x^{2}-1}} \right )

\frac{-5.y}{\sqrt{x^{2}-1}}                    ......................(i)

=>\sqrt{x^{2}-1}\:\frac{dy}{dx}=-5y

=>\sqrt{x^{2}-1}\times \frac{d^{2}y}{dx^{2}}+\frac{2x}{2\sqrt{x^{2}-1}}\times \frac{dy}{dx}=-5\times \frac{dy}{dx}

=>\left ( x^{2}-1 \right )\frac{d^{2}y}{dx^{2}}+x.\frac{dy}{dx}=-5\sqrt{x^{2}-1}.\frac{dy}{dx}=-5\times \left ( -5y \right )=25y =25y     from (i)

\left ( x^{2}-1 \right )\frac{d^{2}y}{dx^{2}}+x\frac{dy}{dx}-25y=0

\therefore \lambda =1, k=-25

\therefore \lambda +k=-24


Option 1)

-23

Incorrect option    

Option 2)

-24

Correct option

Option 3)

26

Incorrect option    

Option 4)

-26

Incorrect option    

Posted by

divya.saini

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE