Get Answers to all your Questions

header-bg qa

Let \vec{a}\: and \: \vec{b} be two unit vectors such that \left | \vec{a} +\vec{b}\right |=\sqrt{3}

if\vec{c}= \vec{a}+2\vec{b}+3\left ( \vec{a} \times \vec{b}\right )    then   2\left | \vec{c} \right |    is equal to:

  • Option 1)


  • Option 2)


  • Option 3)


  • Option 4)



Answers (1)


As we learnt in 

Vector Product of two vectors(cross product) -

If \vec{a} and \vec{b} are two vectors and \Theta is the angle between them , then \vec{a}\times \vec{b}=\left |\vec{a} \left | \right |\vec{b} \right |Sin\Theta \hat{n}

- wherein

\hat{n} is unit vector perpendicular to both \vec{a} \: and \: \vec{b}




Scalar Product of two vectors (dot product) -

\vec{a}\vec{b}=\left | a \right |\left | b \right |Cos\theta

- wherein

\Theta is the angle between the vectors\vec{a}\: and\:\vec{b}


\left | \vec{a}+\vec{b} \right |=\sqrt{3}

Squaring both sides

\left | \vec{a} \right |^{2}+\left | \vec{b} \right |^{2}+2\left | \vec{a} \right |\left | \vec{b} \right |cos \theta =3

cos \theta=\frac{1}{2}    \Rightarrow \theta=\frac{\pi }{3}

\vec{c}=\vec{a}+2\vec{b}+3\left | \vec{a} \right |\left | \vec{b} \right | sin \frac{\pi }{3}\hat{n}


\vec{c}\cdot \vec{c}=\left ( \vec{a}+2\vec{b}+\frac{3\sqrt{3}}{2}\hat{n} \right )\cdot \left (\vec{a}+2\vec{b}+\frac{3\sqrt{3}}{2}\hat{n} \right )

\left | \vec{c} \right |^{2}=\left | \vec{a} \right |^{2}+4\left | \vec{b} \right |^{2}+\frac{27}{4}+4\left ( \vec{a}\cdot \vec{b} \right )

\left | \vec{c} \right |^{2}=1+4+\frac{27}{4}+4\times 1\times 1\times \frac{1}{2}

\left | \vec{c} \right |^{2}=7+\frac{27}{4}=\frac{55}{4}

\left | \vec{c} \right |^{2}=\frac{\sqrt{55}}{2}

2\left | \vec{c} \right |=\sqrt{55} 



Option 1)


This option is correct.

Option 2)


This option is incorrect.

Option 3)


This option is incorrect.

Option 4)


This option is incorrect.

Posted by


View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE