Get Answers to all your Questions

header-bg qa

At \mathrm{30^{\circ} \mathrm{C},} the half life for the decomposition of \mathrm{\mathrm{AB}_{2}} is \mathrm{200 \mathrm{~s}} and is independent of the initial concentration of \mathrm{\mathrm{AB}_{2}}. The time required for \mathrm{ 80 \%} of the \mathrm{ \mathrm{AB}_{2}} to decompose is 

\mathrm{ Given: \log 2=0.30 \log 3=0.48 }

Option: 1

\mathrm{200 \mathrm{~s}}


Option: 2

\mathrm{323 \mathrm{~s}}


Option: 3

\mathrm{467 \mathrm{~s}}


Option: 4

\mathrm{532 \mathrm{~s}}


Answers (1)

best_answer

The half life is 200 S and it is independent of the initial concentration of \text{AB}_{2}

So, it is first order reaction.

\mathrm{\begin{aligned} &\mathrm{t v_2}=\frac{\ln 2}{\text{k}}=200\; \mathrm{sec} \\ &\Rightarrow \quad \text{k}=\frac{\ln 2}{200} \sec ^{-1} \\ \end{aligned}}

Now, \mathrm{k=\frac{2.303}{t} \log \frac{a}{a-x}}

80% completion , So, \mathrm{x=0.89\Rightarrow a-x=a-0.89=0.29}

Then, \mathrm{k=\frac{2.303}{t_{80}}\log\left ( \frac{9}{0.29} \right )}

          \mathrm{\frac{\ln 2}{200}=\frac{2.303}{t_{80}} \log \left(\frac{10}{2}\right)}

\begin{aligned} &\operatorname{t}_{80}=\frac{\ln 10-\ln 2}{\ln 2} \times 200 \\ \end{aligned}

\mathrm{t_{80}=\frac{\log 10-\log^{2}}{\log^{2}}\times 200}

\begin{aligned} &\text {t}_{80}=\left(\frac{1}{\log 2}-1\right) \times 200=\left(\frac{1}{0.3}-1\right) \times 200 \\ &\operatorname{t}_{80}=466.6 \approx 467 \mathrm{sec} . \end{aligned}

Hence, Option (3) is correct.

Posted by

rishi.raj

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE