Get Answers to all your Questions

header-bg qa

Calculate the diameter (d) of the cylindrical pores with length (C) present in a catalyst having internal surface area of \mathrm{900 \mathrm{~m}^2} per \mathrm{\mathrm{cm}^3} of a bulk material whose half of the bulk volume have pores and other half is made of solid substance considering that the measured surface area is the total area of the curved surfaces of the tubules.

Option: 1

\mathrm{25 ~A^{\circ}}


Option: 2

\mathrm{32 \mathrm{~A}^{\circ}}


Option: 3

\mathrm{22 \mathrm{~A}^{\circ}}


Option: 4

\mathrm{15~ A^{\circ}}


Answers (1)

best_answer

\mathrm{\text { Basis }=1 \mathrm{~cm}^3 \text { of catalyst }}

\mathrm{\therefore \text { Total volume of pores }=0.5 \times 1}

                                                        \mathrm{=0.5 \mathrm{~cm}^3}

Consider, n no. of total pores are present.

\mathrm{\therefore \text { volume of each pore }=\frac{1}{4} \pi d^2 l}

                                                      \mathrm{=\frac{1}{4} \pi d^2 l \times n=0.5 \mathrm{~cm}^3}

\mathrm{\text { surface ara of total pores }=900 \mathrm{~m}^2}

                                    \mathrm{9 \times 10^6 \mathrm{~cm}^2=n \times \pi \mathrm{dl}}

\mathrm{\therefore \frac{\frac{1}{4} \times \pi d^2 l \times n}{n \pi d l}=\frac{d}{4}=\frac{0.5 \mathrm{~cm}^3}{9 \times 10^6 \mathrm{~cm}^2}}

                  \mathrm{d=\frac{0.5 \times 4}{9 \times 10^6}}

                      \mathrm{=22 A^{\circ}}

Posted by

mansi

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE