Get Answers to all your Questions

header-bg qa

Suppose f\left ( x \right ) is differentiable at  x= 1 \: and\: \lim_{h\rightarrow 0}\frac{1}{h}f\left ( 1+h \right )= 5,

then {f}'\left ( 1 \right ) equals

  • Option 1)

    4

  • Option 2)

    3

  • Option 3)

    6

  • Option 4)

    5

 

Answers (1)

best_answer

As we learnt in 

Differentiability -

Let  f(x) be a real valued function defined on an open interval (a, b) and  x\epsilon (a, b).Then  the function  f(x) is said to be differentiable at   x_{\circ }   if

\lim_{h\rightarrow 0}\:\frac{f(x_{0}+h)-f(x_{0})}{(x_{0}+h)-x_{0}}


or\:\:\:\lim_{h\rightarrow 0}\:\frac{f(x)-f(x_{0})}{x-x_{0}}

-

 

 f{}'\left ( 1 \right )=\lim_{h\rightarrow 0}\frac{f\left ( 1+h \right )-f\left ( 1 \right )}{h}

\lim_{h\rightarrow 0}\frac{f\left ( 1+h \right )}{h}-\lim_{h\rightarrow 0}\frac{f\left ( 1 \right )}{h}

Now \lim_{h\rightarrow 0}\frac{f\left ( 1+h \right )}{h}=5

so that \lim_{h\rightarrow 0}\frac{f\left ( 1 \right )}{h} must be finite as f{}'\left ( 1 \right ) exists But \lim_{h\rightarrow 0}\frac{f\left ( 1 \right )}{h} can be finite only if f\left ( 1 \right )=0 and \lim_{h\rightarrow 0}\frac{f\left ( 1 \right )}{h}=0

Therefore f{}'\left ( 1 \right )=\lim_{h\rightarrow 0}\frac{f\left ( 1+h \right )}{h}=5


Option 1)

4

Incorrect option

Option 2)

3

Incorrect option

Option 3)

6

Incorrect option

Option 4)

5

Correct option

Posted by

prateek

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE