Get Answers to all your Questions

header-bg qa

The sum of first 9 terms of the series

\frac{1^{3}}{1}+\frac{1^{3}+2^{3}}{1+3}+\frac{1^{3}+2^{3}+3^{3}}{1+3+5}+...is:

  • Option 1)

    71

  • Option 2)

    96

  • Option 3)

    142

  • Option 4)

    192

 

Answers (1)

As we learnt in 

Summation of series of natural numbers -

\sum_{k=1}^{n}K= \frac{1}{2}n\left ( n+1 \right )
 

- wherein

Sum of first n natural numbers

1+2+3+4+------+n= \frac{n(n+1)}{2}

 

 and

 

Summation of series of natural numbers -

\sum_{k=1}^{n}K^{3}= \frac{1}{4}n^{2}\left ( n+1 \right )^{2}
 

- wherein

Sum of cubes of  first n natural numbers

1^{3}+2^{3}+3^{3}+4^{3}+------+n^{3}= \frac{n^{2}(n+1)^{2}}{4}

 

\frac{1^{3}}{1}+\frac{1^{3}+2^{3}}{1+3}+\frac{1^{3}+2^{3}+3^{3}}{1+3+5}+ \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot

T_{n}= \frac{1^{3}+2^{3}+3^{3}+----}{1+3+5+-----}

     = \frac{\left ( \frac{n(n+1)}{2} \right )^{2}}{\frac{n}{2}\left [ 2\cdot 1+(n-1)\times 2 \right ]}

    = \frac{\left ( \frac{n(n+1)}{2} \right )^{2}}{n}

    =\frac{1}{4}\frac{n^{2}(n+1)^{2}}{n^{2}}

     =\frac{1}{4}(n+1)^{2}

     \therefore T_{n}= \frac{1}{4}(n^{2}+2n+1)

               =\frac{n^{2}}{4}+\frac{n}{2}+\frac{1}{4}

    \therefore \sum T_{n}= S_{n}= \sum \frac{n^{2}}{4}+\frac{1}{2}\sum n+\frac{1}{4}\sum1

                              = \frac{1}{4}\cdot \frac{n(n+1)(2n+1)}{6}+\frac{1}{2}\cdot \frac{n(n+1)}{2}+\frac{1}{4}\times n

                              = \frac{n(n+1)(2n+1)}{24}+\frac{n(n+1)}{4}+\frac{n}{4}

Put n = 9     =\frac{9\times 10\times 19}{24} +\frac{9\times 10}{4}+\frac{9}{4}

                              =\frac{3\times 5\times 19}{4} +\frac{9\times 10}{4}+\frac{9}{4}

                              =\frac{3\times 95+90+9}{4}

                              =\frac{285+99}{4}

                               =\frac{384}{4}

                               =96


Option 1)

71

This option is incorrect

Option 2)

96

This option is correct

Option 3)

142

This option is incorrect

Option 4)

192

This option is incorrect

Posted by

Sabhrant Ambastha

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE