If m is chosen in the quadratic equation \left ( m^{2}+1 \right )x^{2}-3x+\left ( m^{2}+1 \right )^{2}=0 such that the sum of its roots is greatest, then the absolute difference of the cubes of its roots is  :

  • Option 1)

    10\sqrt{5}

  • Option 2)

    8\sqrt{3}

  • Option 3)

    8\sqrt{5}

  • Option 4)

    4\sqrt{3}

 

Answers (1)

 

\\\ sum\:\:of\:\:root = \frac{-b}{a} \\\\\:=-\frac{-3}{m^{2}+1}=\frac{3}{(m^{2}+1)}

for sum of root to be greatest   m^{2}+1  should be minimum \neq0

\\f^{'}(m)=m^{2}+1=0\\\\\:f^{'}(m)=2m=0

\therefore m=0

now equation 

=x^{2}-3x+1=0

roots=\frac{3\pm \sqrt{9-4}}{2}= \frac{3\pm \sqrt{5}}{2}

\\\alpha+\beta=\frac{3}{m^{2}+1}=3\\\\\:\alpha\beta=\frac{(m+1)^{2}}{m^{2}+1}=1

\\\left | \alpha^{3}-\beta^{3} \right |=\left | (\alpha-\beta)(\alpha^{2}+\beta^{2}+\alpha\beta) \right |\\\\\:\left | \sqrt{(\alpha+\beta)^{2}-4\alpha\beta} \right | \left | (\alpha+\beta)^{2}-\alpha\beta \right |

=\sqrt{5}.8=8\sqrt{5}

 

 

  


Option 1)

10\sqrt{5}

Option 2)

8\sqrt{3}

Option 3)

8\sqrt{5}

Option 4)

4\sqrt{3}

Preparation Products

Knockout JEE Main April 2021

An exhaustive E-learning program for the complete preparation of JEE Main..

₹ 22999/- ₹ 14999/-
Buy Now
Knockout JEE Main April 2022

An exhaustive E-learning program for the complete preparation of JEE Main..

₹ 34999/- ₹ 24999/-
Buy Now
Test Series JEE Main April 2021

Take chapter-wise, subject-wise and Complete syllabus mock tests and get in depth analysis of your test..

₹ 6999/- ₹ 4999/-
Buy Now
JEE Main Rank Booster 2021

This course will help student to be better prepared and study in the right direction for JEE Main..

₹ 13999/- ₹ 9999/-
Buy Now
Test Series JEE Main April 2022

Take chapter-wise, subject-wise and Complete syllabus mock tests and get an in-depth analysis of your test..

₹ 6999/-
Buy Now
Boost your Preparation for JEE Main 2021 with Personlized Coaching
 
Exams
Articles
Questions